306 resultados para dynamic configuration
Resumo:
This paper presents a study done into the effectiveness of using local acceleration measurements vs. remote angle measurements in providing stabilising control via SVCs following large disturbances. The system studied was an analogue of the Queensland-New South Wales Interconnection (QNI) and involved the control of an existing Static Var Compensators (SVC) at Sydney West. This study is placed in the context of wide area controls for large systems using aggregated models for groups of machines.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.
Resumo:
Covertly tracking mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms requires both visual and acoustic stealth. Whilst the use of robots for stealthy surveillance is not new, the majority only consider navigation for visual covertness. However, most fielded robotic systems have a non-negligible acoustic footprint arising from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. This time-varying acoustic signature can jeopardise any visual covertness and needs to be addressed in any stealthy navigation strategy. In previous work, we addressed the initial concepts for acoustically masking a tracking robot’s movements as it travels between observation locations selected to minimise its detectability by a dynamic natural target and ensuring con- tinuous visual tracking of the target. This work extends the overall concept by examining the utility of real-time acoustic signature self-assessment and exploiting shadows as hiding locations for use in a combined visual and acoustic stealth framework.
Resumo:
This work is motivated by the desire to covertly track mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms with a non-negligible acoustic signature. The use of robots for stealthy surveillance is not new. Many studies exist but only consider the navigation problem to maintain visual covertness. However, robotic systems also have a significant acoustic footprint from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. All these can jepordise any visual covertness. In this work, we experimentally explore the concepts of opportunistically utilizing naturally occurring sounds within outdoor environments to mask the motion of a robot, and being visually covert whilst maintaining constant observation of the target. Our experiments in a constrained outdoor built environment demonstrate the effectiveness of the concept by showing a reduced acoustic signature as perceived by a mobile target allowing the robot to covertly navigate to opportunistic vantage points for observation.
Resumo:
This paper describes a texture recognition based method for segmenting kelp from images collected in highly dynamic shallow water environments by an Autonomous Underwater Vehicle (AUV). A particular challenge is image quality that is affected by uncontrolled lighting, reduced visibility, significantly varying perspective due to platform egomotion, and kelp sway from wave action. The kelp segmentation approach uses the Mahalanobis distance as a way to classify Haralick texture features from sub-regions within an image. The results illustrate the applicability of the method to classify kelp allowing construction of probability maps of kelp masses across a sequence of images.
Resumo:
Rail steel bridges are vulnerable to high impact forces due to the passage of trains; unfortunately the determination of these transient impact forces is not straightforward as these are affected by a large number of parameters, including the wagon design, the wheel-rail contact and the design parameters of the bridge deck and track, as well as the operational parameters – wheel load and speed. To determine these impact forces, a detailed rail train-track/bridge dynamic interaction model has been developed, which includes a comprehensive train model using multi-body dynamics approach and a flexible track/bridge model using Euler– Bernoulli beam theory. Single and multi-span bridges have been modelled to examine their dynamic characteristics. From the single span bridge, the train critical speed is determined; the minimum distance of two peak loadings is found to affect the train critical speed. The impact factor and the dynamic characteristics are discussed.
Resumo:
Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from materials characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures, comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures but little attention has been given to the effect on the light scattering properties in relation to DLS. In this work, small (core size < 5 nm) core-shell nanoparticles were used as a case study to measure the capping thickness of a layer of dodecanethiol (DDT) on Au and ZnO nanoparticles by DLS. We find that the DDT shell has very little effect on the scattering properties of the inorganic core and hence can be ignored to a first approximation. However, this results in conventional DLS analysis overestimating the hydrodynamic size in the volume and number weighted distributions. By introducing a simple correction formula that more accurately yields hydrodynamic size distributions a more precise determination of the molecular shell thickness is obtained. With this correction, the measured thickness of the DDT shell was found to be 7.3 ± 0.3 Å, much less than the extended chain length of 16 Å. This organic layer thickness suggests that on small nanoparticles, the DDT monolayer adopts a compact disordered structure rather than an open ordered structure on both ZnO and Au nanoparticle surfaces. These observations are in agreement with published molecular dynamics results.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.
Resumo:
This paper presents a method for the continuous segmentation of dynamic objects using only a vehicle mounted monocular camera without any prior knowledge of the object’s appearance. Prior work in online static/dynamic segmentation is extended to identify multiple instances of dynamic objects by introducing an unsupervised motion clustering step. These clusters are then used to update a multi-class classifier within a self-supervised framework. In contrast to many tracking-by-detection based methods, our system is able to detect dynamic objects without any prior knowledge of their visual appearance shape or location. Furthermore, the classifier is used to propagate labels of the same object in previous frames, which facilitates the continuous tracking of individual objects based on motion. The proposed system is evaluated using recall and false alarm metrics in addition to a new multi-instance labelled dataset to evaluate the performance of segmenting multiple instances of objects.
Resumo:
Organizational learning has been studied as a key factor in firm performance and internationalization. Moving beyond the past emphasis on market learning, we develop a more complete explanation of learning, its relationship to innovation, and their joint effect on early internationalization. We theorize that, driven by the founders’ international vision, early internationalizing firms employ a dual subsystem of dynamic capabilities: a market subsystem consisting of market-focused learning capability and marketing capability, and a socio-technical subsystem comprised of network learning capability and internally focused learning capability. We argue that innovation mediates the proposed relationship between the dynamic capability structure and early internationalization. We conduct case studies to develop the conceptual framework and test it in a field survey of early internationalizing firms from Australia and the United States. Our findings indicate a complex interplay of capabilities driving innovation and early internationalization. We provide theoretical and practical implications and offer insights for future research.
Resumo:
We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5 × 10-7 cm2/min to more than 10-4 cm2/min, depending on the CO2 pressure and location on the sample.
Resumo:
A dynamic accumulator is an algorithm, which gathers together a large set of elements into a constant-size value such that for a given element accumulated, there is a witness confirming that the element was indeed included into the value, with a property that accumulated elements can be dynamically added and deleted into/from the original set such that the cost of an addition or deletion operation is independent of the number of accumulated elements. Although the first accumulator was presented ten years ago, there is still no standard formal definition of accumulators. In this paper, we generalize formal definitions for accumulators, formulate a security game for dynamic accumulators so-called Chosen Element Attack (CEA), and propose a new dynamic accumulator for batch updates based on the Paillier cryptosystem. Our construction makes a batch of update operations at unit cost. We prove its security under the extended strong RSA (es-RSA) assumption
Resumo:
In the last years, the trade-o between exibility and sup- port has become a leading issue in work ow technology. In this paper we show how an imperative modeling approach used to de ne stable and well-understood processes can be complemented by a modeling ap- proach that enables automatic process adaptation and exploits planning techniques to deal with environmental changes and exceptions that may occur during process execution. To this end, we designed and imple- mented a Custom Service that allows the Yawl execution environment to delegate the execution of subprocesses and activities to the SmartPM execution environment, which is able to automatically adapt a process to deal with emerging changes and exceptions. We demonstrate the fea- sibility and validity of the approach by showing the design and execution of an emergency management process de ned for train derailments.
Resumo:
Nowadays, process management systems (PMSs) are widely used in many business scenarios, e.g. by government agencies, by insurance companies, and by banks. Despite this widespread usage, the typical application of such systems is predominantly in the context of static scenarios, instead of pervasive and highly dynamic scenarios. Nevertheless, pervasive and highly dynamic scenarios could also benefit from the use of PMSs.
Resumo:
Literature from around the world clearly suggests that engineering education has been relatively slow to incorporate significant knowledge and skill areas, including the rapidly emerging area of sustainable development. Within this context, this paper presents the findings of research that questioned how engineering educators could consistently implement systematic and intentional curriculum renewal that is responsive to emerging engineering challenges and opportunities. The paper presents a number of elements of systematic and intentional curriculum renewal that have been empirically distilled from a qualitative multiple-method iterative research approach including literature review, narrative enquiry, pilot trials and peer-review workshops undertaken by the authors with engineering educators from around the world. The paper also presents new knowledge arising from the research, in the form of a new model that demonstrates a dynamic and deliberative mechanism for strategically accelerating for curriculum renewal efforts. Specifically the paper discusses implications of this model to achieve education for sustainable development, across all disciplines of engineering. It concludes with broader research and practice implications for the field of education research.