326 resultados para drug dose
Resumo:
Drug resistance continues to be a major barrier to the delivery of curative therapies in cancer. Historically, drug resistance has been associated with over-expression of drug transporters, changes in drug kinetics or amplification of drug targets. However, the emergence of resistance in patients treated with new-targeted therapies has provided new insight into the complexities underlying cancer drug resistance. Recent data now implicate intratumoural heterogeneity as a major driver of drug resistance. Single cell sequencing studies that identified multiple genetically distinct variants within human tumours clearly demonstrate the heterogeneous nature of human tumours. The major contributors to intratumoural heterogeneity are (i) genetic variation, (ii) stochastic processes, (iii) the microenvironment and (iv) cell and tissue plasticity. Each of these factors impacts on drug sensitivity. To deliver curative therapies to patients, modification of current therapeutic strategies to include methods that estimate intratumoural heterogeneity and plasticity will be essential.
Resumo:
New advancement in genomics, proteomics, and metabonomics created significant excitement about the use of these relatively new technologies in drug design, discovery, development, and molecular-targeted therapeutics by identifying new drug targets and better tools for safety and efficacy studies in preclinical and clinical stages of drug development as well as diagnostics. In this chapter, we will briefly discuss the application of genomics, proteomics, and metabonomics in drug discovery and development
Resumo:
Realizing the promise of molecularly targeted inhibitors for cancer therapy will require a new level of knowledge about how a drug target is wired into the control circuitry of a complex cellular network. Here we review general homeostatic principles of cellular networks that enable the cell to be resilient in the face of molecular perturbations, while at the same time being sensitive to subtle input signals. Insights into such mechanisms may facilitate the development of combination therapies that take advantage of the cellular control circuitry, with the aim of achieving higher efficacy at a lower drug dosage and with a reduced probability of drug-resistance development.
Resumo:
Introduction and aims: Despite evidence that many Australian adolescents have considerable experience with various drug types, little is known about the extent to which adolescents use multiple substances. The aim of this study was to examine the degree of clustering of drug types within individuals, and the extent to which demographic and psychosocial predictors are related to cluster membership. Design and method: A sample of 1402 adolescents aged 12-17. years were extracted from the Australian 2007 National Drug Strategy Household Survey. Extracted data included lifetime use of 10 substances, gender, psychological distress, physical health, perceived peer substance use, socioeconomic disadvantage, and regionality. Latent class analysis was used to determine clusters, and multinomial logistic regression employed to examine predictors of cluster membership. Result: There were 3 latent classes. The great majority (79.6%) of adolescents used alcohol only, 18.3% were limited range multidrug users (encompassing alcohol, tobacco, and marijuana), and 2% were extended range multidrug users. Perceived peer drug use and psychological distress predicted limited and extended multiple drug use. Psychological distress was a more significant predictor of extended multidrug use compared to limited multidrug use. Discussion and conclusion: In the Australian school-based prevention setting, a very strong focus on alcohol use and the linkages between alcohol, tobacco and marijuana are warranted. Psychological distress may be an important target for screening and early intervention for adolescents who use multiple drugs.
Resumo:
Zein was investigated for use as an oral-drug delivery system by loading prednisolone into zein microparticles using coacervation. To investigate the adaptability of this method to other drugs, zein microparticles were loaded with hydrocortisone, which is structurally related to prednisolone; or mesalazine, which is structurally different having a smaller LogP and ionizable functional groups. Investigations into the in vitro digestibility, and the electrophoretic profile of zein, and zein microparticles were conducted to shed further insight on using this protein as a drug delivery system. Hydrocortisone loading into zein microparticles was comparable with that reported for prednisolone, but mesalazine loading was highly variable. Depending on the starting quantities of hydrocortisone and zein, the average amount of microparticles equivalent to 4 mg hydrocortisone, (a clinically used dose), ranged from 60-115 mg, which is realistic and practical for oral dosing. Comparatively, an average of 2.5 g of microparticles was required to deliver 250 mg of mesalazine (a clinically used dose), so alternate encapsulation methods that can produce higher and more precise mesalazine loading are required. In vitro protein digestibility revealed that zein microparticles were more resistant to digestion compared to the zein raw material, and that individual zein peptides are not preferentially coacervated into the microparticles. In combination, these results suggest that there is potential to formulate a delivery system based on zein microparticles made using specific subunits of zein that is more resistant to digestion as starting material, to deliver drugs to the lower gastrointestinal tract.
Resumo:
Zein has been proposed as a polymer for targeted-drug delivery via the oral route. Zein microparticles were loaded with prednisolone and evaluated as an oral delivery system. Microparticles were formulated using phase separation. Starting quantities of zein and prednisolone, along with the agitation method and temperature were found to significantly impact drug loading and loading efficiency. Vortex mixing produced the highest drug loading and loading efficiency. Drug release was measured in simulated conditions of the stomach and small intestine using the microparticles made with the method that best improved drug loading. In simulated stomach and small intestine conditions, prednisolone release reached almost 70 over 3 and 4h, respectively. While a clinically relevant dose may be delivered using c. 100mg of zein microparticles, prednisolone release from the microparticles indicates that they may not be suited as a controlled-or targeted-delivery system.
Resumo:
We show that imatinib, nilotinib, and dasatinib possess weak off-target activity against RAF and, therefore, drive paradoxical activation of BRAF and CRAF in a RAS-dependent manner. Critically, because RAS is activated by BCR-ABL, in drug-resistant chronic myeloid leukemia (CML) cells, RAS activity persists in the presence of these drugs, driving paradoxical activation of BRAF, CRAF, MEK, and ERK, and leading to an unexpected dependency on the pathway. Consequently, nilotinib synergizes with MEK inhibitors to kill drug-resistant CML cells and block tumor growth in mice. Thus, we show that imatinib, nilotinib, and dasatinib drive paradoxical RAF/MEK/ERK pathway activation and have uncovered a synthetic lethal interaction that can be used to kill drug-resistant CML cells in vitro and in vivo.
Resumo:
Introduction With the ever-increasing global burden of retinal disease, there is an urgent need to vastly improve formulation strategies that enhance posterior eye delivery of therapeutics. Despite intravitreal administration having demonstrated notable superiority over other routes in enhancing retinal drug availability, there still exist various significant physical/biochemical barriers preventing optimal drug delivery into the retina. A further complication lies with an inability to reliably translate laboratory-based retinal models into a clinical setting. Several formulation approaches have recently been evaluated to improve intravitreal therapeutic outcomes, and our aim in this review is to highlight strategies that hold the most promise. Areas covered We discuss the complex barriers faced by the intravitreal route and examine how formulation strategies including implants, nanoparticulate carriers, viral vectors and sonotherapy have been utilized to attain both sustained delivery and enhanced penetration through to the retina. We conclude by highlighting the advances and limitations of current in vitro, ex vivo and in vivo retinal models in use by researchers globally. Expert opinion Various nanoparticle compositions have demonstrated the ability to overcome the retinal barriers successfully; however, their utility is limited to the laboratory setting. Optimization of these formulations and the development of more robust experimental retinal models are necessary to translate success in the laboratory into clinically efficacious outcomes.
Resumo:
Background Administrative data from the Australian Pharmaceutical Benefits Scheme (PBS) showed rapid growth of esomeprazole dispensing when it was launched. Australia has universal prescription medicine coverage (the PBS), which included esomeprazole from August 2002. Free samples of new medicines are commonly provided to doctors. Objectives To determine if a relationship exists between marketing expenditure on samples and the dispensing rate for esomeprazole in Australia between June 2002 and September 2006. Methods Quarterly sample expenditures at product/brand level for proton pump inhibitors (PPIs) for Australian general practitioners were obtained for July 2002 to September 2006. Corresponding PBS dispensing data were obtained for all PPIs and converted to defined daily dose (DDD)/1000 population/day. Spending on samples was calculated as dollars per dispensed prescription and plotted against time on the Australian market. Results: Total PPI usage increased from 34.2 to 50.8 DDD/1000 population/ day over the study period. Expenditure on samples per dispensed prescription was higher when a PPI was new on the market and diminished over 5-6 years to a relatively constant level. The rapid decline in this ratio was demonstrated by a case study following esomeprazole from launch in Australia for almost 5 years clearly demonstrating the initial investment to drive sales. Conclusion A relationship appears to exist between expenditure on esomeprazole samples and its usage in Australia. A high initial investment was followed by a rapid reduction in cost per prescription dispensed, predominantly due to growth in market share. This trend was consistent with other PPIs
Resumo:
Despite the widespread use of ambient ultraviolet radiation (UVR) as a proxy measure of personal exposure to UVR, the relationship between the two is not well-defined. This paper examines the effects of season and latitude on the relationship between ambient UVR and personal UVR exposure. We used data from the AusD Study, a multi-centre cross-sectional study among Australian adults (18-75 years), where personal UVR exposure was objectively measured using polysulphone dosimeters. Data were analysed for 991 participants from 4 Australian cities of different latitude: Townsville (19.3 °S), Brisbane (27.5 °S), Canberra (35.3 °S) and Hobart (42.8 °S). Daily personal UVR exposure varied from 0.01 to 21 Standard Erythemal Doses (median=1.1, IQR: 0.5–2.1), on average accounting for 5% of the total available ambient dose. There was an overall positive correlation between ambient UVR and personal UVR exposure (r=0.23, p<0.001). However, the correlations varied according to season and study location: from strong correlations in winter (r=0.50) and at high latitudes (Hobart, r=0.50; Canberra, r=0.39), to null or even slightly negative correlations, in summer (r=0.01) and at low latitudes (Townsville, r=-0.06; Brisbane, r=-0.16). Multiple regression models showed significant effect modification by season and location. Personal exposure fraction of total available ambient dose was highest in winter (7%) and amongst Hobart participants (7%) and lowest in summer (1%) and in Townsville (4%). These results suggest season and latitude modify the relationship between ambient UVR and personal UVR exposure. Ambient UVR may not be a good indicator for personal exposure dose under some circumstances.
Resumo:
Lead compounds are known genotoxicants, principally affecting the integrity of chromosomes. Lead chloride and lead acetate induced concentration-dependent increases in micronucleus frequency in V79 cells, starting at 1.1 μM lead chloride and 0.05 μM lead acetate. The difference between the lead salts, which was expected based on their relative abilities to form complex acetato-cations, was confirmed in an independent experiment. CREST analyses of the micronuclei verified that lead chloride and acetate were predominantly aneugenic (CREST-positive response), which was consistent with the morphology of the micronuclei (larger micronuclei, compared with micronuclei induced by a clastogenic mechanism). The effects of high concentrations of lead salts on the microtubule network of V79 cells were also examined using immunofluorescence staining. The dose effects of these responses were consistent with the cytotoxicity of lead(II), as visualized in the neutral-red uptake assay. In a cell-free system, 20-60 μM lead salts inhibited tubulin assembly dose-dependently. The no-observed-effect concentration of lead(II) in this assay was 10 μM. This inhibitory effect was interpreted as a shift of the assembly/disassembly steady-state toward disassembly, e.g., by reducing the concentration of assembly-competent tubulin dimers. The effects of lead salts on microtubule-associated motor-protein functions were studied using a kinesin-gliding assay that mimics intracellular transport processes in vitro by quantifying the movement of paclitaxel-stabilized microtubules across a kinesin-coated glass surface. There was a dose-dependent effect of lead nitrate on microtubule motility. Lead nitrate affected the gliding velocities of microtubules starting at concentrations above 10 μM and reached half-maximal inhibition of motility at about 50 μM. The processes reported here point to relevant interactions of lead with tubulin and kinesin at low dose levels.
Resumo:
This study investigated the hypothesis that the chromosomal genotoxicity of inorganic mercury results from interaction(s) with cytoskeletal proteins. Effects of Hg2+ salts on functional activities of tubulin and kinesin were investigated by determining tubulin assembly and kinesin-driven motility in cell-free systems. Hg2+ inhibits microtubule assembly at concentrations above 1 μM, and inhibition is complete at about 10 μM. In this range, the tubulin assembly is fully (up to 6 μM) or partially (∼6-10 μM) reversible. The inhibition of tubulin assembly by mercury is independent of the anion, chloride or nitrate. The no-observed-effect- concentration for inhibition of microtubule assembly in vitro was 1 μM Hg2+, the IC50 5.8 μM. Mercury(II) salts at the IC 50 concentrations partly inhibiting tubulin assembly did not cause the formation of aberrant microtubule structures. Effects of mercury salts on the functionality of the microtubule motility apparatus were studied with the motor protein kinesin. By using a "gliding assay" mimicking intracellular movement and transport processes in vitro, HgCl2 affected the gliding velocity of paclitaxel-stabilised microtubules in a clear dose-dependent manner. An apparent effect is detected at a concentration of 0.1 μM and a complete inhibition is reached at 1 μM. Cytotoxicity of mercury chloride was studied in V79 cells using neutral red uptake, showing an influence above 17 μM HgCl2. Between 15 and 20 μM HgCl2 there was a steep increase in cell toxicity. Both mercury chloride and mercury nitrate induced micronuclei concentration-dependently, starting at concentrations above 0.01 μM. CREST analyses on micronuclei formation in V79 cells demonstrated both clastogenic (CREST-negative) and aneugenic effects of Hg2+, with some preponderance of aneugenicity. A morphological effect of high Hg2+ concentrations (100 μM HgCl2) on the microtubule cytoskeleton was verified in V79 cells by immuno-fluorescence staining. The overall data are consistent with the concept that the chromosomal genotoxicity could be due to interaction of Hg2+ with the motor protein kinesin mediating cellular transport processes. Interactions of Hg 2+ with the tubulin shown by in vitro investigations could also partly influence intracellular microtubule functions leading, together with the effects on the kinesin, to an impaired chromosome distribution as shown by the micronucleus test.
Resumo:
Between 1984 and 1997, six cases of urothelial cancer and 14 cases of renal cell cancer occurred in a group of 500 underground mining workers in the copper-mining industry of the former German Democratic Republic, with high exposures to explosives containing technical dinitrotoluene. Exposure durations ranged from 7 to 37 years, and latency periods ranged from 21 to 46 years. The incidences of both urothelial and renal cell tumors in this group were much higher than anticipated on the basis of the cancer registers of the German Democratic Republic by factors of 4.5 and 14.3, respectively. The cancer cases and a representative group of 183 formerly dinitrotoluene- exposed miners of this local industry were interviewed for their working history and grouped into four exposure categories. This categorization of the 14 renal cell tumor cases revealed no dose-dependency concerning explosives in any of the four exposure categories and was similar to that of the representative group of employees, whereas the urothelial tumor cases were predominantly confined to the high-exposure categories. Furthermore, all identified tumor patients were genotyped by polymerase chain reaction, using lymphocyte DNA, regarding their genetic status of the polymorphic xenobiotic metabolizing enzymes, including the N-acetyltransferase 2 and the glutathione-S-transferases M1 and T1. This genotyping revealed remarkable distributions only for the urothelial tumor cases, who were exclusively identified as 'slow acetylators.' This points to the possibility of human carcinogenicity of dinitrotoluene, with regard to the urothelium as the target tissue.