264 resultados para connective tissue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioreactors are defined as devices in which biological and/or biochemical processes develop under closely monitored and tightly controlled environmental and operating conditions (e.g. pH, temperature, mechanical conditions, nutrient supply and waste removal). In functional tissue engineering of musculoskeletal tissues, a bioreactor capable of controlling dynamic loading plays a determinant role. It has been shown that mechanical stretching promotes the expression of type I and III collagens, fibronectin, tenascin-C in cultured ligament fibroblasts (J.C.-H. Goh et al., Tissue Eng. 9 (2003), S31) and that human bone marrow mesenchymal stem cells (hBMMSC) – even in the absence of biochemical regulators – could be induced to differentiate into ligament-like fibroblast by the application of physiologically relevant cyclic strains (G. Vunjak-Novakovic et al., Ann. Rev. Biomed. Eng. 6 (2004), 131; H.A. Awad et al., Tissue Eng. 5 (1999), 267; R.G. Young et al., J. Orthop. Res. 16 (1998), 406). Different bioreactors are commercially available but they are too generic to be used for a given tissue, each tissue showing specific mechanical loading properties. In the case of ligament tissue engineering, the design of a bioreactor is still an open question. Our group proposes a bioreactor allowing cyclic traction–torsion on a scaffold seeded with stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION There is evidence that the reduction of blood perfusion caused by closed soft tissue trauma (CSTT) delays the healing of the affected soft tissues and bone [1]. We hypothesise that the characterisation of vascular morphology changes (VMC) following injury allows us to determine the effect of the injury on tissue perfusion and thereby the severity of the injury. This research therefore aims to assess the VMC following CSTT in a rat model using contrast-enhanced micro-CT imaging. METHODOLOGY A reproducible CSTT was created on the left leg of anaesthetized rats (male, 12 weeks) with an impact device. After euthanizing the animals at 6 and 24 hours following trauma, the vasculature was perfused with a contrast agent (Microfil, Flowtech, USA). Both hind-limbs were dissected and imaged using micro-CT for qualitative comparison of the vascular morphology and quantification of the total vascular volume (VV). In addition, biopsy samples were taken from the CSTT region and scanned to compare morphological parameters of the vasculature between the injured and control limbs. RESULTS AND DISCUSSION While the visual observation of the hindlimb scans showed consistent perfusion of the microvasculature with microfil, enabling the identification of all major blood vessels, no clear differences in the vascular architecture were observed between injured and control limbs. However, overall VV within the region of interest (ROI)was  measured to be higher for the injured limbs after 24h. Also, scans of biopsy samples demonstrated that vessel diameter and density were higher in the injured legs 24h after impact. CONCLUSION We believe these results will contribute to the development of objective diagnostic methods for CSTT based on changes to the microvascular morphology as well as aiding in the validation of future non-invasive clinical assessment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Closed soft tissue trauma (CSTT) can be the result of a blunt impact, or a prolonged crush injury and involves damage to the skin, muscles and the neurovascular system. It causes a variety of symptoms such as haematoma and in severe cases may result in hypoxia and necrosis. There is evidence that early vasculature changes following the injury delays the tissue healing [1]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma and the effect of this on CSTT healing is currently missing. Research aims: Developing an experimental rat model to characterise the structural changes to the vasculature after trauma qualitatively and quantitatively using micro CT. MATERIAL AND METHODS An impact device was developed to apply a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetised rats [3]. After euthanizing the animals at 6 hours after trauma, CSTT was qualitatively evaluated by macroscopic observations of the skin and muscles. For vasculature visualisation, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil) using an infusion pump (Figure 4). The overall changes to the vasculature as a result of impact trauma were characterised qualitatively based on the 3D reconstructed images of the vasculature (Figure 5). For a smaller region of interest, the morphological parameters such as vessel thickness (diameter), spacing, and average number per volume were quantified using the scanner’s software. RESULTS AND DISCUSSION Visual observation of CSTT has revealed a haematoma in some animals (Figure 3). Micro CT images indicate good perfusion of the vasculature with contrast agent, allowing the major vessels to be identified (Figure 5). Qualitatively and quantitatively, no differences between injured and non-injured legs were observed at 6 h after trauma. Further time points of 12h, 24h, 3 days and 14 days after trauma will be characterised for identifying temporal changes of the vasculature during healing. Histomorphometical studies are required for validation of the results derived from the micro CT imaging. CONCLUSION AND FUTURE DIRECTION Findings of this research may contribute towards the establishment of a fundamental basis for the quantitative assessment and monitoring of CSTT based on microvasculature changes after trauma, which will ultimately allow for optimising the clinical treatment and improve patient outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but they have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in gel-MA based hydrogels, and show that with the incorporation of small quantities of photo-crosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesised ECM throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 96 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lean body mass (LBM) and muscle mass remains difficult to quantify in large epidemiological studies due to non-availability of inexpensive methods. We therefore developed anthropometric prediction equations to estimate the LBM and appendicular lean soft tissue (ALST) using dual energy X-ray absorptiometry (DXA) as a reference method. Healthy volunteers (n= 2220; 36% females; age 18-79 y) representing a wide range of body mass index (14-44 kg/m2) participated in this study. Their LBM including ALST was assessed by DXA along with anthropometric measurements. The sample was divided into prediction (60%) and validation (40%) sets. In the prediction set, a number of prediction models were constructed using DXA measured LBM and ALST estimates as dependent variables and a combination of anthropometric indices as independent variables. These equations were cross-validated in the validation set. Simple equations using age, height and weight explained > 90% variation in the LBM and ALST in both men and women. Additional variables (hip and limb circumferences and sum of SFTs) increased the explained variation by 5-8% in the fully adjusted models predicting LBM and ALST. More complex equations using all the above anthropometric variables could predict the DXA measured LBM and ALST accurately as indicated by low standard error of the estimate (LBM: 1.47 kg and 1.63 kg for men and women, respectively) as well as good agreement by Bland Altman analyses. These equations could be a valuable tool in large epidemiological studies assessing these body compartments in Indians and other population groups with similar body composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell line array (CMA) and tissue microarray (TMA) technologies are high-throughput methods for analysing both the abundance and distribution of gene expression in a panel of cell lines or multiple tissue specimens in an efficient and cost-effective manner. The process is based on Kononen's method of extracting a cylindrical core of paraffin-embedded donor tissue and inserting it into a recipient paraffin block. Donor tissue from surgically resected paraffin-embedded tissue blocks, frozen needle biopsies or cell line pellets can all be arrayed in the recipient block. The representative area of interest is identified and circled on a haematoxylin and eosin (H&E)-stained section of the donor block. Using a predesigned map showing a precise spacing pattern, a high density array of up to 1,000 cores of cell pellets and/or donor tissue can be embedded into the recipient block using a tissue arrayer from Beecher Instruments. Depending on the depth of the cell line/tissue removed from the donor block 100-300 consecutive sections can be cut from each CMA/TMA block. Sections can be stained for in situ detection of protein, DNA or RNA targets using immunohistochemistry (IHC), fluorescent in situ hybridisation (FISH) or mRNA in situ hybridisation (RNA-ISH), respectively. This chapter provides detailed methods for CMA/TMA design, construction and analysis with in-depth notes on all technical aspects including tips to deal with common pitfalls the user may encounter. © Springer Science+Business Media, LLC 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult soft tissue sarcomas are relatively rare tumours which are curable with radical surgery. Approximately 50% of patients will develop inoperable disease or metastases for which chemotherapy may be inappropriate. Only two cytotoxic agents - doxorubicin and ifosfamide - have activity in > 20% of patients. For both these agents there is evidence of a dose-response relationship. There is currently no good evidence that combination chemotherapy confers a clinical benefit compared with single agents. Outside a clinical trial, standard first-line therapy should be with single agent doxorubicin at a dose intensity ≥ 70 mg2 every 3 weeks. Approximately 25% of patients may be expected to respond to this regimen. There is the suggestion that responses may occur to ifosfamide in patients who progress on doxorubicin. The role of chemotherapy in the adjuvant setting remains uncertain. Several trials have suggested a modest relapse-free and overall survival benefit for the use of post-operative chemotherapy and a recent overview of 14 randomised trials confirms a small though significant benefit. These benefits have to be weighed against the toxicity of chemotherapy. The importance of treating all patients with soft tissue sarcomas in clinical trials is stressed. There is an urgent need to define new active agents to treat this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common goal of tissue engineering is to develop substitutes that can closely mimic the structure of extracellular matrix (ECM). However, similarly important is the intensive material properties which have often been overlooked, in particular, for soft tissues that are not to bear load assumingly. The mechanostructural properties determine not only the structural stability of biomaterials but also their physiological functionality by directing cellular activity and regulating cell fate decision. The aim here is to emphasize that cells could sense intensive material properties like elasticity and reside, proliferate, migrate and differentiate accordinglyno matter if the construct is from a natural source like cartilage, skin etc. or of synthetic one. Meanwhile, the very objective of this work is to provide a tunable scheme for manipulating the elasticity of collagen-based constructs to be used to demonstrate how to engineer cell behavior and regulate mechanotransduction. Articular cartilage was chosen as it represents one of the most complex hierarchical arrangements of collagen meshwork in both connective tissues and ECM-like biomaterials. Corona discharge treatment was used to produce constructs with varying density of crosslinked collagen and stiffness accordingly. The results demonstrated that elastic modulus increased up to 33% for samples treated up to one minute as crosslink density was found to increase with exposure time. According to the thermal analysis, longer exposure to corona increased crosslink density as the denaturation enthalpy increased. However the spectroscopy results suggested that despite the stabilization of the collagen structure the integrity of the triple helical structure remained intact. The in vitro superficial culture of heterologous chondrocytes also determined that the corona treatment can modulate migration with increased focal adhesion of cells due to enhanced stiffness, without cytotoxicity effects, and providing the basis for reinforcing three-dimensional collagen-based biomaterials in order to direct cell function and mediate mechanotransduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryotherapy is currently used in various clinical, rehabilitative, and sporting settings. However, very little is known regarding the impact of cooling on the microcirculatory response. Objectives: The present study sought to examine the influence of two commonly employed modalities of cryotherapy, whole body cryotherapy (WBC; -110°C) and cold water immersion(CWI; 8±1°C), on skin microcirculation in the mid- thigh region. Methods: The skin area examined was a 3 × 3 cm located between the most anterior aspect of the inguinal fold and the patella. Following 10 minutes of rest, 5 healthy, active males were exposed to either WBC for 3 minutes or CWI for 5 minutes in a randomised order. Volunteers lay supine for five minutes after treatment, in order to monitor the variation of red blood cell (RBC) concentration in the region of interest for a duration of 40 minutes. Microcirculation response was assessed using a non-invasive, portable instrument known as a Tissue Viability imaging system. After a minimum of seven days, the protocol was repeated. Subjective assessment of the volunteer’s thermal comfort and thermal sensation was also recorded. Results: RBC was altered following exposure to both WBC and CWI but appeared to stabilise approximately 35 minutes after treatments. Both WBC and CWI affected thermal sensation (p < 0.05); however no betweengroup differences in thermal comfort or sensation were recorded (p > 0.05). Conclusions: As both WBC and CWI altered RBC, further study is necessary to examine the mechanism for this alteration during whole body cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significance: Chronic wounds represent a major burden on global healthcare systems and reduce the quality of life of those affected. Significant advances have been made in our understanding of the biochemistry of wound healing progression. However, knowledge regarding the specific molecular processes influencing chronic wound formation and persistence remains limited. Recent Advances: Generally, healing of acute wounds begins with hemostasis and the deposition of a plasma-derived provisional matrix into the wound. The deposition of plasma matrix proteins is known to occur around the microvasculature of the lower limb as a result of venous insufficiency. This appears to alter limb cutaneous tissue physiology and consequently drives the tissue into a ‘preconditioned’ state that negatively influences the response to wounding. Critical Issues: Processes, such as oxygen and nutrient suppression, edema, inflammatory cell trapping/extravasation, diffuse inflammation, and tissue necrosis are thought to contribute to the advent of a chronic wound. Healing of the wound then becomes difficult in the context of an internally injured limb. Thus, interventions and therapies for promoting healing of the limb is a growing area of interest. For venous ulcers, treatment using compression bandaging encourages venous return and improves healing processes within the limb, critically however, once treatment concludes ulcers often reoccur. Future Directions: Improved understanding of the composition and role of pericapillary matrix deposits in facilitating internal limb injury and subsequent development of chronic wounds will be critical for informing and enhancing current best practice therapies and preventative action in the wound care field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study cell wall properties; moisture distribution, stiffness, thickness and cell dimension have been taken into consideration. Cell wall stiffness dependent on complex combination of plant cell microstructures, composition and water holding capacity of the cell. In this work, some preliminary steps taken by investing cell wall properties of apple in order to predict change of porosity and shrinkage during drying. Two different types of apple cell wall characteristic were investigated to correlate with porosity and shrinkage after convective drying. A scanning electron microscope (SEM), 2N Intron, a pyncometer and image J software were used in order to measure and analyze cell characteristics, water dynamics, porosity and shrinkage. Cell stiffness of red delicious apple was found higher than granny smith apples. A significant relationship has found between cell wall characteristics and both heat and mass transfer. Consequently, evolution of porosity and shrinkage noticeably influenced during convective drying by the nature of cell wall. This study has brought better understanding of porosity and shrinkage of dried food stuff in microscopic (cell) level and would provide better insight to attain energy effective drying process and quality food stuff.