259 resultados para barometro altitudine navigazione indoor pressione atmosferica riconoscimento piani sensori
Resumo:
Purpose: Older adults have increased visual impairment, including refractive blur from presbyopic multifocal spectacle corrections, and are less able to extract visual information from the environment to plan and execute appropriate stepping actions; these factors may collectively contribute to their higher risk of falls. The aim of this study was to examine the effect of refractive blur and target visibility on the stepping accuracy and visuomotor stepping strategies of older adults during a precision stepping task. Methods: Ten healthy, visually normal older adults (mean age 69.4 ± 5.2 years) walked up and down a 20 m indoor corridor stepping onto selected high and low-contrast targets while viewing under three visual conditions: best-corrected vision, +2.00 DS and +3.00 DS blur; the order of blur conditions was randomised between participants. Stepping accuracy and gaze behaviours were recorded using an eyetracker and a secondary hand-held camera. Results: Older adults made significantly more stepping errors with increasing levels of blur, particularly exhibiting under-stepping (stepping more posteriorly) onto the targets (p<0.05), while visuomotor stepping strategies did not significantly alter. Stepping errors were also significantly greater for the low compared to the high contrast targets and differences in visuomotor stepping strategies were found, including increased duration of gaze and increased interval between gaze onset and initiation of the leg swing when stepping onto the low contrast targets. Conclusions: These findings highlight that stepping accuracy is reduced for low visibility targets, and for high levels of refractive blur at levels typically present in multifocal spectacle corrections, despite significant changes in some of the visuomotor stepping strategies. These findings highlight the importance of maximising the contrast of objects in the environment, and may help explain why older adults wearing multifocal spectacle corrections exhibit an increased risk of falling.
Resumo:
We present an approach for the inspection of vertical pole-like infrastructure using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures, such as light and power distribution poles, is a time consuming, dangerous and expensive task with high operator workload. To address these issues, we propose a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. We adopt an Image based Visual Servoing (IBVS) technique using only two line features to stabilise the vehicle with respect to a pole. Visual, inertial and sonar data are used, making the approach suitable for indoor or GPS-denied environments. Results from simulation and outdoor flight experiments demonstrate the system is able to successfully inspect and circumnavigate a pole.
Resumo:
Wi-Fi is a commonly available source of localization information in urban environments but is challenging to integrate into conventional mapping architectures. Current state of the art probabilistic Wi-Fi SLAM algorithms are limited by spatial resolution and an inability to remove the accumulation of rotational error, inherent limitations of the Wi-Fi architecture. In this paper we leverage the low quality sensory requirements and coarse metric properties of RatSLAM to localize using Wi-Fi fingerprints. To further improve performance, we present a novel sensor fusion technique that integrates camera and Wi-Fi to improve localization specificity, and use compass sensor data to remove orientation drift. We evaluate the algorithms in diverse real world indoor and outdoor environments, including an office floor, university campus and a visually aliased circular building loop. The algorithms produce topologically correct maps that are superior to those produced using only a single sensor modality.
Resumo:
Objectives To quantify the burden of disease attributable to smoking in South Africa for 2000. Design The absolute difference between observed lung cancer death rate and the level in non-smokers, adjusted for occupational and indoor exposure to lung carcinogens, was used to estimate the proportion of lung cancer deaths attributable to smoking and the smoking impact ratio (SIR). The SIR was substituted for smoking prevalence in the attributable fraction formula for chronic obstructive pulmonary disease (COPD) and cancers to allow for the long lag between exposure and outcome. Assuming a shorter lag between exposure and disease, the current prevalence of smoking was used to estimate the population-attributable fractions (PAF) for the other outcomes. Relative risks (RR) from the American Cancer Society cancer prevention study (CPS-II) were used to calculate PAF. Setting South Africa. Outcome measures Deaths and disability-adjusted life years (DALYs) due to lung and other cancers, COPD, cardiovascular conditions, respiratory tuberculosis, and other respiratory and medical conditions. Results Smoking caused between 41 632 and 46 656 deaths in South Africa, accounting for 8.0 - 9.0% of deaths and 3.7 - 4.3% of DALYs in 2000. Smoking ranked third (after unsafe sex/sexually transmitted disease and high blood pressure) in terms of mortality among 17 risk factors evaluated. Three times as many males as females died from smoking. Lung cancer had the largest attributable fraction due to smoking. However, cardiovascular diseases accounted for the largest proportion of deaths attributed to smoking. Conclusion Cigarette smoking accounts for a large burden of preventable disease in South Africa. While the government has taken bold legislative action to discourage tobacco use since 1994, it still remains a major public health priority.
Resumo:
INTRODUCTION: The first South African National Burden of Disease study quantified the underlying causes of premature mortality and morbidity experienced in South Africa in the year 2000. This was followed by a Comparative Risk Assessment to estimate the contributions of 17 selected risk factors to burden of disease in South Africa. This paper describes the health impact of exposure to four selected environmental risk factors: unsafe water, sanitation and hygiene; indoor air pollution from household use of solid fuels; urban outdoor air pollution and lead exposure. METHODS: The study followed World Health Organization comparative risk assessment methodology. Population-attributable fractions were calculated and applied to revised burden of disease estimates (deaths and disability adjusted life years, [DALYs]) from the South African Burden of Disease study to obtain the attributable burden for each selected risk factor. The burden attributable to the joint effect of the four environmental risk factors was also estimated taking into account competing risks and common pathways. Monte Carlo simulation-modeling techniques were used to quantify sampling, uncertainty. RESULTS: Almost 24 000 deaths were attributable to the joint effect of these four environmental risk factors, accounting for 4.6% (95% uncertainty interval 3.8-5.3%) of all deaths in South Africa in 2000. Overall the burden due to these environmental risks was equivalent to 3.7% (95% uncertainty interval 3.4-4.0%) of the total disease burden for South Africa, with unsafe water sanitation and hygiene the main contributor to joint burden. The joint attributable burden was especially high in children under 5 years of age, accounting for 10.8% of total deaths in this age group and 9.7% of burden of disease. CONCLUSION: This study highlights the public health impact of exposure to environmental risks and the significant burden of preventable disease attributable to exposure to these four major environmental risk factors in South Africa. Evidence-based policies and programs must be developed and implemented to address these risk factors at individual, household, and community levels.
Resumo:
Mongolia has significant exposure to environmental risk factors because of poor environmental management and behaviors, and children are increasingly vulnerable to these threats. This study aimed to assess levels of exposure and summarize the evidence for associations between exposures to environmental risk factors and adverse health outcomes in Mongolia, with a particular focus on children. A systematic review was conducted using the PubMed, EMBASE, Web of Science, Global Health Library, CINAHL, CABI, Scopus, and mongolmed.mn electronic databases up to April 2014 . A total of 59 studies meeting the predetermined criteria were included. Results indicate that the Mongolian population has significant exposure to outdoor and indoor air pollution, metals, environmental tobacco smoke, and other chemical toxins, and these risk factors have been linked to respiratory and cardiovascular diseases among adults and respiratory diseases and neurodevelopmental disorders among children. Well-designed epidemiological investigations in vulnerable populations especially in pregnant women and children are recommended.
Resumo:
Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.
Resumo:
Elevated levels of fungi in indoor environments have been linked with mould/moisture damage in building structures. However, there is a lack of information about “normal” concentrations and flora as well as guidelines of viable fungi in the school environment in different climatic conditions. We have reviewed existing guidelines for indoor fungi and the current knowledge of the concentrations and flora of viable fungi in different climatic areas, the impact of the local factors on concentrations and flora of viable fungi in school environments. Meta-regression was performed to estimate the average behaviour for each analysis of interest, showing wide variation in the mean concentrations in outdoor and indoor school environments (range: 101-103 cfu/m3). These concentrations were significantly higher for both outdoors and indoors in the moderate than in the continental climatic area, showing that the climatic condition was a determinant for the concentrations of airborne viable fungi. The most common fungal species both in the moderate and continental area were Cladosporium spp. and Penicillium spp. The suggested few quantitative guidelines for indoor air viable fungi for school buildings are much lower than for residential areas. This review provides a synthesis, which can be used to guide the interpretation of the fungi measurements results and help to find indications of mould/moisture in school building structures.