236 resultados para Vibrations


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adjustable speed induction generators, especially the Doubly-Fed Induction Generators (DFIG) are becoming increasingly popular due to its various advantages over fixed speed generator systems. A DFIG in a wind turbine has ability to generate maximum power with varying rotational speed, ability to control active and reactive by integration of electronic power converters such as the back-to-back converter, low rotor power rating resulting in low cost converter components, etc, DFIG have become very popular in large wind power conversion systems. This chapter presents an extensive literature survey over the past 25 years on the different aspects of DFIG. Application of H8 Controller for enhanced DFIG-WT performance in terms of robust stability and reference tracking to reduce mechanical stress and vibrations is also demonstrated in the chapter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman and infrared spectra of the uranyl mineral phurcalite, Ca2(UO2)3O2(PO4)2⋅7H2O, from Red Canyon, Utah, USA, were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (PO4)3− units and to the stretching and bending vibrations and libration modes of water molecules. Approximate lengths of U–O in (UO2)2+ and O–H⋯O hydrogen bond lengths were inferred from observed stretching vibrations. The presence of structurally nonequivalent U6+ and P5+ was inferred from the number of corresponding stretching bands of (UO2)2+ and (PO4)3− units observed in the Raman and infrared spectra..

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral coquimbite has been analysed using a range of techniques including SEM with EDX, thermal analytical techniques and Raman and infrared spectroscopy. The mineral originated from the Javier Ortega mine, Lucanas Province, Peru. The chemical formula was determined as ðFe3þ 1:37; Al0:63ÞP2:00ðSO4Þ3 9H2O. Thermal analysis showed a total mass loss of 73.4% on heating to 1000 C. A mass loss of 30.43% at 641.4 C is attributed to the loss of SO3. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of sulphate tetrahedra, aluminium oxide/hydroxide octahedra, water molecules and hydroxyl ions. The Raman spectrum shows well resolved bands at 2994, 3176, 3327, 3422 and 3580 cm 1 attributed to water stretching vibrations. Vibrational spectroscopy combined with thermal analysis provides insight into the structure of coquimbite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the boron containing mineral ezcurrite Na4B10O17·7H2O using electron microscopy and vibrational spectroscopy. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1037 cm−1 is assigned to BO stretching vibration. Raman bands at 1129, 1163, 1193 cm−1 are attributed to BO stretching vibration of the tetrahedral units. The Raman band at 947 cm−1 is attributed to the antisymmetric stretching modes of tetrahedral boron. The sharp Raman peak at 1037 cm−1 is from the 11-B component such a mode, then it should have a smaller 10-B satellite near (1.03) × (1037) = 1048 cm−1, and indeed a small peak at 1048 is observed. The broad Raman bands at 3186, 3329, 3431, 3509, 3547 and 3576 cm−1 are assigned to water stretching vibrations. Broad infrared bands at 3170, 3322, 3419, 3450, 3493, 3542, 3577 and 3597 cm−1 are also assigned to water stretching vibrations. Infrared bands at 1330, 1352, 1389, 1407, 1421 and 1457 cm−1 are assigned to the antisymmetric stretching vibrations of trigonal boron. The observation of so many bands suggests that there is considerable variation in the structure of ezcurrite. Infrared bands at 1634, 1646 and 1681 cm−1 are assigned to water bending modes. The number of water bending modes is in harmony with the number of water stretching vibrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectra of two well-defined types of cobaltkoritnigite and koritnigite crystals were recorded and interpreted. Significant differences in the Raman spectra of cobaltkoritnigite and koritnigite were observed. Observed Raman bands were attributed to the (AsO3OH)2− stretching and bending vibrations, stretching and bending vibrations of water molecules and hydroxyl ions. Both Raman and infrared spectra of cobaltkoritnigite identify bands which are attributable to phosphate and hydrogen phosphate anions proving some substitution of phosphate for arsenate in the structure of cobaltkoritnigite. The OH⋯O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X-ray single crystal refinement. The presence of (AsO3OH)2− units in the crystal structure of cobaltkoritnigite and koritnigite was proved from the Raman spectra which supports the conclusions of the X-ray structure analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the molecular structure of the mineral of plumbophyllite. The Raman spectrum is dominated by a very intense sharp peak at 1027 cm−1, assigned to the SiO stretching vibrations of (SiO3)n units. A very intense Raman band at 643 cm−1 is assigned to the bending mode of (SiO3)n units. Raman bands observed at 3215, 3443, 3470, 3494 and 3567 cm−1 are assigned to water stretching vibrations. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate surfaces. Because of the close similarity in the structure of plumbophyllite and apophyllite, a comparison of the spectra with that of apophyllites is made. By using vibrational spectroscopy an assessment of the molecular structure of plumbophyllite has been made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphohedyphane Ca2Pb3(PO4)3Cl is rare Ca and Pb phosphate mineral that belongs to the apatite supergroup. We have analysed phosphohedyphane using SEM with EDX, and Raman and infrared spectroscopy. The chemical analysis shows the presence of Pb, Ca, P and Cl and the chemical formula is expressed as Ca2Pb3(PO4)3Cl. The very sharp Raman band at 975 cm−1 is assigned to the PO43-ν1 symmetric stretching mode. Raman bands noted at 1073, 1188 and 1226 cm−1 are to the attributed to the PO43-ν3 antisymmetric stretching modes. The two Raman bands at 835 and 812 cm−1 assigned to the AsO43-ν1 symmetric stretching vibration and AsO43-ν3 antisymmetric stretching modes prove the substitution of As for P in the structure of phosphohedyphane. A series of bands at 557, 577 and 595 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 units. The multiplicity of bands in the ν2, ν3 and ν4 spectral regions provides evidence for the loss of symmetry of the phosphate anion in the phosphohedyphane structure. Observed bands were assigned to the stretching and bending vibrations of phosphate tetrahedra. Some Raman bands attributable to OH stretching bands were observed, indicating the presence of water and/or OH units in the structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral barahonaite is in all probability a member of the smolianinovite group. The mineral is an arsenate mineral formed as a secondary mineral in the oxidized zone of sulphide deposits. We have studied the barahonaite mineral using a combination of Raman and infrared spectroscopy. The mineral is characterized by a series of Raman bands at 863 cm−1 with low wavenumber shoulders at 802 and 828 cm−1. These bands are assigned to the arsenate and hydrogen arsenate stretching vibrations. The infrared spectrum shows a broad spectral profile. Two Raman bands at 506 and 529 cm−1 are assigned to the triply degenerate arsenate bending vibration (F 2, ν4), and the Raman bands at 325, 360, and 399 cm−1 are attributed to the arsenate ν2 bending vibration. Raman and infrared bands in the 2500–3800 cm−1 spectral range are assigned to water and hydroxyl stretching vibrations. The application of Raman spectroscopy to study the structure of barahonaite is better than infrared spectroscopy, probably because of the much higher spatial resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectra of two well-defined ferrimolybdite samples, Fe23+(Mo6+O4)3·7–8H2O, from the Krupka deposit (northern Bohemia, Czech Republic) and Hůrky near Rakovník occurrence (central Bohemia, Czech Republic) were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of molybdate anions, Fe–O units and water molecules. Number of Raman and infrared bands assigned to (MoO4)2− units and water molecules proved that symmetrically (structurally) nonequivalent (MoO4)2− and H2O are present in the crystal structure of ferrimolybdite. Approximate O–H⋯O hydrogen bond lengths (2.80–2.73 Å) were inferred from the published infrared spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the mineral kornerupine, a borosilicate mineral, by using a combination of scanning electron microscopy with energy-dispersive analysis and Raman and infrared spectroscopy. Qualitative chemical analysis of kornerupine shows a magnesium–aluminum silicate. Strong Raman bands at 925, 995, and 1051 cm−1 with bands of lesser intensity at 1035 and 1084 cm−1 are assigned to the silicon–oxygen stretching vibrations of the siloxane units. Raman bands at 923 and 947 cm−1 are attributed to the symmetrical stretching vibrations of trigonal boron. Infrared spectra show greater complexity and the infrared bands are more difficult to assign. Two intense Raman bands at 3547 and 3612 cm−1 are assigned to the stretching vibrations of hydroxyl units. The infrared bands are observed at 3544 and 3610 cm−1. Water is also identified in the spectra of kornerupine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the mineral poldervaartite CaCa\[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn\[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485 °C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm−1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm−1 are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm−1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)⋅H2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm−1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm−1. A very sharp band is observed at 3668 cm−1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm−1 are assigned to water stretching vibrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral ushkovite has been analyzed using a combination of electron microscopy with EDX and vibrational spectroscopy. Chemical analysis shows the mineral contains P, Mg with very minor Fe. Thus, the formula of the studied ushkovite is Mg32+(PO4)2·8H2O. The Raman spectrum shows an intense band at 953 cm−1 assigned to the ν1 symmetric stretching mode. In the infrared spectra complexity exists with multiple antisymmetric stretching vibrations observed, due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong infrared bands around 827 cm−1 are attributed to water librational modes. The Raman spectra of the hydroxyl-stretching region are complex with overlapping broad bands. Hydroxyl stretching vibrations are identified at 2881, 2998, 3107, 3203, 3284 and 3457 cm−1. The wavenumber band at 3457 cm−1 is attributed to the presence of FeOH groups. This complexity is reflected in the water HOH bending modes where a strong infrared band centered around 1653 cm−1 is found. Such a band reflects the strong hydrogen bonding of the water molecules to the phosphate anions in adjacent layers. Spectra show three distinct OH bending bands from strongly hydrogen-bonded, weakly hydrogen bonded water and non-hydrogen bonded water. Vibrational spectroscopy enhances our knowledge of the molecular structure of ushkovite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tooeleite is an unique ferric arsenite sulfate mineral, which has the potential significance of directly fixing As(III) as mineral trap. The tooeleite and various precipitates were hydrothermally synthesized under the different of initial As(III)/As(V) molar ratios and characterized by XRD, FTIR, XPS and SEM. The crystallinity of tooeleite decreases with the amount of As(V). The precipitate is free of any crystalline tooeleite at the level of that XRD could detect when the ratio of As(III)/As(V) of 7:3 and more. The characteristic bands of tooeleite are observed in 772, 340, 696 and 304 cm−1, which are assigned to the ν1, ν2, ν3 and ν4 vibrations of AsO33−. These intensities of bands gradually decreases with the presence of As(V) and its increasing. An obviously wide band is observed in 830 cm−1, which is the ν1 vibration of AsO4. The result of XPS reveals that the binding energies of As3d increase from 44.0 eV to 45.5 eV, which indicates that the amount of As(V) in the precipitates increases. The concentrations of arsenic released of these precipitates are 350–650 mg/L. The stability of tooeleite decreases by comparison when the presence of coexisting As(V) ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the borate mineral szaibelyite MgBO2(OH) using electron microscopy and vibrational spectroscopy. EDS spectra show a phase composed of Mg with minor amounts of Fe. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1099 cm−1 with a shoulder band at 1093 cm−1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm−1 are attributed to the BOH in-plane bending modes. Raman bands at 836 and 988 cm−1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The infrared bands at 3559 and 3547 cm−1 are assigned to hydroxyl stretching vibrations. Broad infrared bands at 3269 and 3398 cm−1 are assigned to water stretching vibrations. Infrared bands at 1306, 1352, 1391, 1437 cm−1 are assigned to the antisymmetric stretching vibrations of trigonal boron. Vibrational spectroscopy enables aspects of the molecular structure of the borate mineral szaibelyite to be assessed.