226 resultados para Tree wind loads
Resumo:
Any kind of imbalance in the operation of a wind turbine has adverse effect on the downstream torsional components as well as tower structure. It is crucial to detect imbalance at its very inception. The identification of the type of imbalance is also required so that appropriate measures of fault accommodation can be performed in the control system. In particular, it is important to distinguish between mass and aerodynamic imbalance. While the former is gradually caused by a structural anomaly (e.g. ice deposition, moisture accumulation inside blade), the latter is generally associated to a fault in the pitch control system. This paper proposes a technique for the detection and identification of imbalance fault in large scale wind turbines. Unlike most other existing method it requires only the rotor speed signal which is readily available in existing turbines. Signature frequencies have been proposed in this work to identify imbalance type based on their physical phenomenology. The performance of this technique has been evaluated by simulations using an existing benchmark model. The effectiveness of the proposed method has been confirmed by the simulation results.
Resumo:
为研究风电并网对互联系统低频振荡的影响,基于完整的双馈风电机组模型,定性分析了两区域互联系统在风电机组并网前后阻尼特性的变化情况.从双馈风电机组并网输送距离、并网容量、互联系统联络线传送功率、是否加装电力系统稳定器等多个方面,多角度分析了风电场并网对互联系统小干扰稳定及低频振荡特性的影响.之后,以两个包括两个区域的电力系统为例,进行了系统的计算分析和比较.结果表明,有双馈风电机组接入的互联电力系统,在不同运行模式下,双馈风电机组的并网输送距离、出力水平、联络线传送功率对低频振荡模式的影响在趋势和程度上均有显著差异,这样在对风电场进行入网规划、设计和运行时就需要综合考虑这些因素的影响.
Resumo:
This paper presents the development and experimental validation of a prototype system for online estimation and compensation of wind disturbances onboard small Rotorcraft unmanned aerial systems (RUAS). The proposed approach consists of integrating a small pitot-static system onboard the vehicle and using simple but effective algorithms for estimating the wind speed in real time. The baseline flight controller has been augmented with a feed-forward term to compensate for these wind disturbances, thereby improving the flight performance of small RUAS in windy conditions. The paper also investigates the use of online airspeed measurements in a closed-loop for controlling the RUAS forward motion without the aid of a global positioning system (GPS). The results of more than 80 flights with a RUAS confirm the validity of our approach.
Resumo:
The primary objective of this paper is to study the use of medical image-based finite element (FE) modelling in subjectspecific midsole design and optimisation for heel pressure reduction using a midsole plug under the calcaneus area (UCA). Plugs with different relative dimensions to the size of the calcaneus of the subject have been incorporated in the heel region of the midsole. The FE foot model was validated by comparing the numerically predicted plantar pressure with biomechanical tests conducted on the same subject. For each UCA midsole plug design, the effect of material properties and plug thicknesses on the plantar pressure distribution and peak pressure level during the heel strike phase of normal walking was systematically studied. The results showed that the UCA midsole insert could effectively modify the pressure distribution, and its effect is directly associated with the ratio of the plug dimension to the size of the calcaneus bone of the subject. A medium hardness plug with a size of 95% of the calcaneus has achieved the best performance for relieving the peak pressure in comparison with the pressure level for a solid midsole without a plug, whereas a smaller plug with a size of 65% of the calcaneus insert with a very soft material showed minimum beneficial effect for the pressure relief.
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. Such a vessel is a key enabling factor for operation and maintenance (O&M) of offshore wind-energy infrastructure. The control system designed is referred to as Boarding Control System (BCS). We investigate the performance of this system for a specific wind-farm service vessel–The Wave Craft. A two-modality vessel model is presented to account for the vessel free motion and motion whilst in contact with a wind-turbine. On a SES, the pressurized air cushion carries the majority of the vessel mass. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. This leads to a safer personnel transfer in developed sea-states than what is possible today. Results for the BCS is presented through simulation and model-scale craft testing.
Resumo:
The export of sediments from coastal catchments can have detrimental impacts on estuaries and near shore reef ecosystems such as the Great Barrier Reef. Catchment management approaches aimed at reducing sediment loads require monitoring to evaluate their effectiveness in reducing loads over time. However, load estimation is not a trivial task due to the complex behaviour of constituents in natural streams, the variability of water flows and often a limited amount of data. Regression is commonly used for load estimation and provides a fundamental tool for trend estimation by standardising the other time specific covariates such as flow. This study investigates whether load estimates and resultant power to detect trends can be enhanced by (i) modelling the error structure so that temporal correlation can be better quantified, (ii) making use of predictive variables, and (iii) by identifying an efficient and feasible sampling strategy that may be used to reduce sampling error. To achieve this, we propose a new regression model that includes an innovative compounding errors model structure and uses two additional predictive variables (average discounted flow and turbidity). By combining this modelling approach with a new, regularly optimised, sampling strategy, which adds uniformity to the event sampling strategy, the predictive power was increased to 90%. Using the enhanced regression model proposed here, it was possible to detect a trend of 20% over 20 years. This result is in stark contrast to previous conclusions presented in the literature. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates by minimizing the biases and making use of possible predictive variables. The load estimation procedure can be summarized by the following four steps: - (i) output the flow rates at regular time intervals (e.g. 10 minutes) using a time series model that captures all the peak flows; - (ii) output the predicted flow rates as in (i) at the concentration sampling times, if the corresponding flow rates are not collected; - (iii) establish a predictive model for the concentration data, which incorporates all possible predictor variables and output the predicted concentrations at the regular time intervals as in (i), and; - (iv) obtain the sum of all the products of the predicted flow and the predicted concentration over the regular time intervals to represent an estimate of the load. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized regression (rating-curve) approach with additional predictors that capture unique features in the flow data, namely the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and cumulative discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. The model also has the capacity to accommodate autocorrelation in model errors which are the result of intensive sampling during floods. Incorporating this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach using the concentrations of total suspended sediment (TSS) and nitrogen oxide (NOx) and gauged flow data from the Burdekin River, a catchment delivering to the Great Barrier Reef. The sampling biases for NOx concentrations range from 2 to 10 times indicating severe biases. As we expect, the traditional average and extrapolation methods produce much higher estimates than those when bias in sampling is taken into account.
Resumo:
Background Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Methods Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. Findings The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+ 2,+1,− 2 relative to the apex, (p < 0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. Interpretation While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning.
Resumo:
Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.
Resumo:
This research is a step forward in discovering knowledge from databases of complex structure like tree or graph. Several data mining algorithms are developed based on a novel representation called Balanced Optimal Search for extracting implicit, unknown and potentially useful information like patterns, similarities and various relationships from tree data, which are also proved to be advantageous in analysing big data. This thesis focuses on analysing unordered tree data, which is robust to data inconsistency, irregularity and swift information changes, hence, in the era of big data it becomes a popular and widely used data model.
Resumo:
This paper presents an effective classification method based on Support Vector Machines (SVM) in the context of activity recognition. Local features that capture both spatial and temporal information in activity videos have made significant progress recently. Efficient and effective features, feature representation and classification plays a crucial role in activity recognition. For classification, SVMs are popularly used because of their simplicity and efficiency; however the common multi-class SVM approaches applied suffer from limitations including having easily confused classes and been computationally inefficient. We propose using a binary tree SVM to address the shortcomings of multi-class SVMs in activity recognition. We proposed constructing a binary tree using Gaussian Mixture Models (GMM), where activities are repeatedly allocated to subnodes until every new created node contains only one activity. Then, for each internal node a separate SVM is learned to classify activities, which significantly reduces the training time and increases the speed of testing compared to popular the `one-against-the-rest' multi-class SVM classifier. Experiments carried out on the challenging and complex Hollywood dataset demonstrates comparable performance over the baseline bag-of-features method.
Resumo:
The integration of stochastic wind power has accentuated a challenge for power system stability assessment. Since the power system is a time-variant system under wind generation fluctuations, pure time-domain simulations are difficult to provide real-time stability assessment. As a result, the worst-case scenario is simulated to give a very conservative assessment of system transient stability. In this study, a probabilistic contingency analysis through a stability measure method is proposed to provide a less conservative contingency analysis which covers 5-min wind fluctuations and a successive fault. This probabilistic approach would estimate the transfer limit of a critical line for a given fault with stochastic wind generation and active control devices in a multi-machine system. This approach achieves a lower computation cost and improved accuracy using a new stability measure and polynomial interpolation, and is feasible for online contingency analysis.
Resumo:
Imbalance is not only a direct major cause of downtime in wind turbines, but also accelerates the degradation of neighbouring and downstream components (e.g. main bearing, generator). Along with detection, the imbalance quantification is also essential as some residual imbalance always exist even in a healthy turbine. Three different commonly used sensor technologies (vibration, acoustic emission and electrical measurements) are investigated in this work to verify their sensitivity to different imbalance grades. This study is based on data obtained by experimental tests performed on a small scale wind turbine drive train test-rig for different shaft speeds and imbalance levels. According to the analysis results, electrical measurements seem to be the most suitable for tracking the development of imbalance.
Resumo:
Jarvis et al. (Research Articles, 12 December 2014, p. 1320) presented molecular clock analyses that suggested that most modern bird orders diverged just after the mass extinction event at the Cretaceous-Paleogene boundary (about 66 million years ago). We demonstrate that this conclusion results from the use of a single inappropriate maximum bound, which effectively precludes the Cretaceous diversification overwhelmingly supported by previous molecular studies.