519 resultados para TRANSPORTATION NETWORKS
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
Recent studies have shown that small genetic regulatory networks (GRNs) can be evolved in silico displaying certain dynamics in the underlying mathematical model. It is expected that evolutionary approaches can help to gain a better understanding of biological design principles and assist in the engineering of genetic networks. To take the stochastic nature of GRNs into account, our evolutionary approach models GRNs as biochemical reaction networks based on simple enzyme kinetics and simulates them by using Gillespie’s stochastic simulation algorithm (SSA). We have already demonstrated the relevance of considering intrinsic stochasticity by evolving GRNs that show oscillatory dynamics in the SSA but not in the ODE regime. Here, we present and discuss first results in the evolution of GRNs performing as stochastic switches.
Resumo:
The primary goal of the Vehicular Ad Hoc Network (VANET) is to provide real-time safety-related messages to motorists to enhance road safety. Accessing and disseminating safety-related information through the use of wireless communications technology in VANETs should be secured, as motorists may make critical decisions in dealing with an emergency situation based on the received information. If security concerns are not addressed in developing VANET systems, an adversary can tamper with, or suppress, the unprotected message to mislead motorists to cause traffic accidents and hazards. Current research on secure messaging in VANETs focuses on employing the certificate-based Public Key Infrastructure (PKI) scheme to support message encryption and digital signing. The security overhead of such a scheme, however, creates a transmission delay and introduces a time-consuming verification process to VANET communications. This thesis has proposed a novel public key verification and management approach for VANETs; namely, the Public Key Registry (PKR) regime. Compared to the VANET PKI scheme, this new approach can satisfy necessary security requirements with improved performance and scalability, and at a lower cost by reducing the security overheads of message transmission and eliminating digital certificate deployment and maintenance issues. The proposed PKR regime consists of the required infrastructure components, rules for public key management and verification, and a set of interactions and associated behaviours to meet these rule requirements. This is achieved through a system design as a logic process model with functional specifications. The PKR regime can be used as development guidelines for conforming implementations. An analysis and evaluation of the proposed PKR regime includes security features assessment, analysis of the security overhead of message transmission, transmission latency, processing latency, and scalability of the proposed PKR regime. Compared to certificate-based PKI approaches, the proposed PKR regime can maintain the necessary security requirements, significantly reduce the security overhead by approximately 70%, and improve the performance by 98%. Meanwhile, the result of the scalability evaluation shows that the latency of employing the proposed PKR regime stays much lower at approximately 15 milliseconds, whether operating in a huge or small environment. It is therefore believed that this research will create a new dimension to the provision of secure messaging services in VANETs.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.
Resumo:
Collaboration between academic and library faculty is an important topic of discussion and research among academic librarians. Partnerships are vital for developing effective information literacy education. The research reported in this paper aims to develop an understanding of academic collaborators by analyzing academic faculty’s teaching social network. Academic faculty teaching social networks have not been previously described through the lens of social network analysis. A teaching social network is comprised of people and their communication channels that affect academic faculty when they design and deliver their courses. Social network analysis was the methodology used to describe the teaching social networks. The preliminary results show academic faculty were more affected by the channels of communication in how they taught (pedagogy) than what they taught (course content). This study supplements the existing research on collaboration and information literacy. It provides both academic and library faculty with added insight into their relationships.
Resumo:
Determination of the placement and rating of transformers and feeders are the main objective of the basic distribution network planning. The bus voltage and the feeder current are two constraints which should be maintained within their standard range. The distribution network planning is hardened when the planning area is located far from the sources of power generation and the infrastructure. This is mainly as a consequence of the voltage drop, line loss and system reliability. Long distance to supply loads causes a significant amount of voltage drop across the distribution lines. Capacitors and Voltage Regulators (VRs) can be installed to decrease the voltage drop. This long distance also increases the probability of occurrence of a failure. This high probability leads the network reliability to be low. Cross-Connections (CC) and Distributed Generators (DGs) are devices which can be employed for improving system reliability. Another main factor which should be considered in planning of distribution networks (in both rural and urban areas) is load growth. For supporting this factor, transformers and feeders are conventionally upgraded which applies a large cost. Installation of DGs and capacitors in a distribution network can alleviate this issue while the other benefits are gained. In this research, a comprehensive planning is presented for the distribution networks. Since the distribution network is composed of low and medium voltage networks, both are included in this procedure. However, the main focus of this research is on the medium voltage network planning. The main objective is to minimize the investment cost, the line loss, and the reliability indices for a study timeframe and to support load growth. The investment cost is related to the distribution network elements such as the transformers, feeders, capacitors, VRs, CCs, and DGs. The voltage drop and the feeder current as the constraints are maintained within their standard range. In addition to minimizing the reliability and line loss costs, the planned network should support a continual growth of loads, which is an essential concern in planning distribution networks. In this thesis, a novel segmentation-based strategy is proposed for including this factor. Using this strategy, the computation time is significantly reduced compared with the exhaustive search method as the accuracy is still acceptable. In addition to being applicable for considering the load growth, this strategy is appropriate for inclusion of practical load characteristic (dynamic), as demonstrated in this thesis. The allocation and sizing problem has a discrete nature with several local minima. This highlights the importance of selecting a proper optimization method. Modified discrete particle swarm optimization as a heuristic method is introduced in this research to solve this complex planning problem. Discrete nonlinear programming and genetic algorithm as an analytical and a heuristic method respectively are also applied to this problem to evaluate the proposed optimization method.
Resumo:
In this paper a new graph-theory and improved genetic algorithm based practical method is employed to solve the optimal sectionalizer switch placement problem. The proposed method determines the best locations of sectionalizer switching devices in distribution networks considering the effects of presence of distributed generation (DG) in fitness functions and other optimization constraints, providing the maximum number of costumers to be supplied by distributed generation sources in islanded distribution systems after possible faults. The proposed method is simulated and tested on several distribution test systems in both cases of with DG and non DG situations. The results of the simulations validate the proposed method for switch placement of the distribution network in the presence of distributed generation.
Resumo:
Aim: Increased car dependency amongst Australia's ageing population may result in increased social isolation and other health impacts associated with the cessation of driving. While public transport represents an alternative to car usage, patronage remains low amongst senior cohorts. This study investigates the facilitators and barriers to public transport patronage and the nature of car dependence among older Australians. Method: Data was gathered from a sample of 24 adults (mean = 70.33 years) through a combination of quantitative (remote behavioural observation) and qualitative (interviews) investigation. Results: Findings suggest factors of relative convenience, affordability and health/mobility dictate choices of transport mode. The car is considered more convenient for the majority of suburban trips irrespective of the availability of public transport. Conclusion: Policy attention should focus on providing better education and information regarding driving cessation and addressing aged-specific social aspects of public transport including the accommodation of various health and mobility issues.
Resumo:
Although, transportation disadvantage or imbalance between travel needs and supply of transportation system is a great harm to knowledge based environments, quantification and objectively measuring the state of transportation disadvantaged remain to be a great challenge for researcher due to its ambiguity. This poses questions of whether the current indicators are accurately linked with transportation disadvantages and the effectiveness of the current policies. Using current indicators of transportation disadvantages, the state of transportation disadvantage is often exaggerated due to limited afford has been put forward to provide clear assessment on the existed relationship between transportation disadvantage indicators with travel performance or capability. This paper proposes a structural equation model of transportation disadvantage using household variables gained from the 2006-2008 South-East Queensland Travel Survey (SEQTS). The underlying relationships between social economics and demographic characteristics of household with travel performance are modelled using a latent variable approach. The final model has been able to fit the data gathered from SEQTS and explained established links between key household factors with travel capability and determined key indicator of travel capability. The model recognises that travel capability is directly influenced by household factors; vehicle ratio, license possession, retirees and pensioners.
Resumo:
Protection of a distribution network in the presence of distributed generators (DGs) using overcurrent relays is a challenging task due to the changes in fault current levels and reverse power flow. Specifically, in the presence of current limited converter interfaced DGs, overcurrent relays may fail to isolate the faulted section either in grid connected or islanded mode of operation. In this paper, a new inverse type relay is presented to protect a distribution network, which may have several DG connections. The new relay characteristic is designed based on the measured admittance of the protected line. The relay is capable of detecting faults under changing fault current levels. The relay performance is evaluated using PSCAD simulation and laboratory experiments.
Resumo:
The World Health Organisation has highlighted the urgent need to address the escalating global public health crisis associated with road trauma. Low-income and middle-income countries bear the brunt of this, and rapid increases in private vehicle ownership in these nations present new challenges to authorities, citizens, and researchers alike. The role of human factors in the road safety equation is high. In China, human factors have been implicated in more than 90% of road crashes, with speeding identified as the primary cause (Wang, 2003). However, research investigating the factors that influence driving speeds in China is lacking (WHO, 2004). To help address this gap, we present qualitative findings from group interviews conducted with 35 Beijing car drivers in 2008. Some themes arising from data analysis showed strong similarities with findings from highly-motorised nations (e.g., UK, USA, and Australia) and include issues such as driver definitions of ‘speeding’ that appear to be aligned with legislative enforcement tolerances, factors relating to ease/difficulty of speed limit compliance, and the modifying influence of speed cameras. However, unique differences were evident, some of which, to our knowledge, are previously unreported in research literature. Themes included issues relating to an expressed lack of understanding about why speed limits are necessary and a perceived lack of transparency in traffic law enforcement and use of associated revenue. The perception of an unfair system seemed related to issues such as differential treatment of certain drivers and the large amount of individual discretion available to traffic police when administering sanctions. Additionally, a wide range of strategies to overtly avoid detection for speeding and/or the associated sanctions were reported. These strategies included the use of in-vehicle speed camera detectors, covering or removing vehicle licence number plates, and using personal networks of influential people to reduce or cancel a sanction. These findings have implications for traffic law, law enforcement, driver training, and public education in China. While not representative of all Beijing drivers, we believe that these research findings offer unique insights into driver behaviour in China.
Resumo:
Reducing road crashes and associated trauma is a critical focus as the Decade of Action for Road Safety commences. China is one of many rapidly-motorizing nations to experience recent increases in private-vehicle ownership and an associated escalation in novice drivers. Unfortunately, however, China also experiences a high rate of death and injury from road crashes. Several key pieces of legislation have been introduced in recent decades in China to deal with these changes. While managing the legal aspects of road use is important, social influences on driver behaviour may offer additional avenues for promoting safe driving, particularly in a culture where such factors carry high importance. To date, there is limited research on the role of social influence factors on driver behaviour in China, yet we know that Chinese society is strongly based on social rules, customs, and relationships. There is reason to assume therefore, that road use and driving-related issues may also be strongly influenced by social relationships. One previous study that has investigated such issues highlighted the need to consider culturally-specific issues such as interpersonal networks and social hierarchy when examining driver behaviour in China (Xie & Parker, 2002). Those authors suggested that there are some concepts relating to Chinese driving culture that may not necessarily have been identified from research conducted in western contexts and that research conducted in China must be considered in light of such concepts. The current paper reports qualitative research conducted with Beijing drivers to investigate such social influence factors. Findings indicated that family members, friends, and driving instructors appear influential on driver behaviour and that some novice drivers seek additional assistance after obtaining their licence. The finding relating to the influence of driving instructors was not surprising, given the substantial number of new drivers in China. In Beijing, driving instruction is conducted off-road in purpose-specific driving facilities rather than on the road network. Once licensed, it is common for new drivers to have little or no experience driving in complex traffic situations. This learning situation is unlikely to provide all the skills necessary to successfully negotiate crowded city streets and assess the related risk associated with such driving. Therefore, it was not surprising to find that one reported strategy to assist new drivers was to employ the services of an ‘accompanying driver’ to provide ongoing driving instruction once licensed. In more highly motorised countries supervised practice is part of a graduated licensing system where it is compulsory for new drivers to be supervised by a more experienced driver for a requisite period of time before progressing to solo driving. However, as this system is not in place in China, it appears that some drivers seek out and pay for additional support once they commence on-road driving. Additionally, strategies to avoid detection and penalties for inappropriate road use were discussed, many of which involve the use of a third person. These findings indicate potential barriers to implementing effective traffic enforcement and highlight the importance of understanding culturally-specific social factors relating to driver behaviour.
Resumo:
An introduction to thinking about and understanding probability that highlights the main pits and trapfalls that befall logical reasoning
Resumo:
An introduction to elicitation of experts' probabilities, which illustrates common problems with reasoning and how to circumvent them during elicitation.
Resumo:
An introduction to design of eliciting knowledge from experts.