290 resultados para T loop
Resumo:
Loop detectors are the oldest and widely used traffic data source. On urban arterials, they are mainly installed for signal control. Recently state of the art Bluetooth MAC Scanners (BMS) has significantly captured the interest of stakeholders for exploiting it for area wide traffic monitoring. Loop detectors provide flow- a fundamental traffic parameter; whereas BMS provides individual vehicle travel time between BMS stations. Hence, these two data sources complement each other, and if integrated should increase the accuracy and reliability of the traffic state estimation. This paper proposed a model that integrates loops and BMS data for seamless travel time and density estimation for urban signalised network. The proposed model is validated using both real and simulated data and the results indicate that the accuracy of the proposed model is over 90%.
Resumo:
This chapter presents a novel control strategy for trajectory tracking of underwater marine vehicles that are designed using port-Hamiltonian theory. A model for neutrally buoyant underwater vehicles is formulated as a PHS, and then the tracking controller is designed for the horizontal plane-surge, sway and yaw. The control design is done by formulating the error dynamics as a set-point regulation port-Hamiltonian control problem. The control design is formulated in two steps. In the first step, a static-feedback tracking controller is designed, and the second step integral action is added. The global asymptotic stability of the closed loop system is proved and the performance of the controller is illustrated using a model of an open-frame offshore underwater vehicle.
Resumo:
Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
The motion response of marine structures in waves can be studied using finite-dimensional linear-time-invariant approximating models. These models, obtained using system identification with data computed by hydrodynamic codes, find application in offshore training simulators, hardware-in-the-loop simulators for positioning control testing, and also in initial designs of wave-energy conversion devices. Different proposals have appeared in the literature to address the identification problem in both time and frequency domains, and recent work has highlighted the superiority of the frequency-domain methods. This paper summarises practical frequency-domain estimation algorithms that use constraints on model structure and parameters to refine the search of approximating parametric models. Practical issues associated with the identification are discussed, including the influence of radiation model accuracy in force-to-motion models, which are usually the ultimate modelling objective. The illustration examples in the paper are obtained using a freely available MATLAB toolbox developed by the authors, which implements the estimation algorithms described.
Resumo:
In Service-oriented Architectures, business processes can be realized by composing loosely coupled services. The problem of QoS-aware service composition is widely recognized in the literature. Existing approaches on computing an optimal solution to this problem tackle structured business processes, i.e., business processes which are composed of XOR-block, AND-block, and repeat loop orchestration components. As of yet, OR-block and unstructured orchestration components have not been sufficiently considered in the context of QoS-aware service composition. The work at hand addresses this shortcoming. An approach for computing an optimal solution to the service composition problem is proposed considering the structured orchestration components, such as AND/XOR/OR-block and repeat loop, as well as unstructured orchestration components.
Resumo:
This paper reviews some recent results in motion control of marine vehicles using a technique called Interconnection and Damping Assignment Passivity-based Control (IDA-PBC). This approach to motion control exploits the fact that vehicle dynamics can be described in terms of energy storage, distribution, and dissipation, and that the stable equilibrium points of mechanical systems are those at which the potential energy attains a minima. The control forces are used to transform the closed-loop dynamics into a port-controlled Hamiltonian system with dissipation. This is achieved by shaping the energy-storing characteristics of the system, modifying its interconnection structure (how the energy is distributed), and injecting damping. The end result is that the closed-loop system presents a stable equilibrium (hopefully global) at the desired operating point. By forcing the closed-loop dynamics into a Hamiltonian form, the resulting total energy function of the system serves as a Lyapunov function that can be used to demonstrate stability. We consider the tracking and regulation of fully actuated unmanned underwater vehicles, its extension to under-actuated slender vehicles, and also manifold regulation of under-actuated surface vessels. The paper is concluded with an outlook on future research.
Resumo:
In this paper, we consider a passivity-based approach for the design of a control law of multiple ship-roll gyro-stabiliser units. We extend previous work on control of ship roll gyro-stabilisation by considering the problem within a nonlinear framework. In particular, we derive an energy-based model using the port-Hamiltonian theory and then design an active precession controller using passivity-based control interconnection and damping assignment. The design considers the possibility of having multiple gyro-stabiliser units, and the desired potential energy of the system (in closed loop) is chosen to behave like a barrier function, which allows us to enforce constraints on the precession angle of the gyros.
Resumo:
This paper proposes a method for design of a set-point regulation controller with integral action for an underactuated robotic system. The robot is described as a port-Hamiltonian system, and the control design is based on a coordinate transformation and a dynamic extension. Both the change of coordinates and the dynamic extension add extra degrees of freedom that facilitate the solution of the matching equation associated with interconnection and damping assignment passivity-based control designs (IDA-PBC). The stability of the controlled system is proved using the closed loop Hamiltonian as a Lyapunov candidate function. The performance of the proposed controller is shown in simulation.
Resumo:
This paper considers the manoeuvring of underactuated surface vessels. The control objective is to steer the vessel to reach a manifold which encloses a waypoint. A transformation of configuration variables and a potential field are used in a Port-Hamiltonian framework to design an energy-based controller. With the proposed controller, the geometric task associated with the manoeuvring problem depends on the desired potential energy (closed-loop) and the dynamic task depends on the total energy and damping. Therefore, guidance and motion control are addressed jointly, leading to model-energy-based trajectory generation.
Resumo:
As the number of Uninhabited Airborne Systems (UAS) proliferates in civil applications, industry is increasingly putting pressure on regulation authorities to provide a path for certification and allow UAS integration into regulated airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the last topic and describes a framework for quantifying robust autonomy of UAS, which quantifies the system's ability to either continue operating in the presence of faults or safely shut down. Two figures of merit are used to evaluate vehicle performance relative to mission requirements and the consequences of autonomous decision making in motion control and guidance systems. These figures of merit are interpreted within a probabilistic framework, which extends previous work in the literature. The valuation of the figures of merit can be done using stochastic simulation scenarios during both vehicle development and certification stages with different degrees of integration of hardware-in-the-loop simulation technology. The objective of the proposed framework is to aid in decision making about the suitability of a vehicle with respect to safety and reliability relative to mission requirements.
Resumo:
This paper discusses a method to quantify robust autonomy of Uninhabited Vehicles and Systems (UVS) in aerospace, marine, or land applications. Based on mission-vehicle specific performance criteria, we define an system utility function that can be evaluated using simulation scenarios for an envelope of environmental conditions. The results of these evaluations are used to compute a figure of merit or measure for operational efectiveness (MOE). The procedure is then augmented to consider faults and the performance of mechanisms to handle these faulty operational modes. This leads to a measure of robust autonomy (MRA). The objective of the proposed figures of merit is to assist in decision making about vehicle performance and reliability at both vehicle development stage (using simulation models) and at certification stage (using hardware-in-the-loop testing). Performance indices based on dynamic and geometric tasks associated with vehicle manoeuvring problems are proposed, and an example of a two- dimensional y scenario is provided to illustrate the use of the proposed figures of merit.
Resumo:
Plant small RNAs are a class of 19- to 25-nucleotide (nt) RNA molecules that are essential for genome stability, development and differentiation, disease, cellular communication, signaling, and adaptive responses to biotic and abiotic stress. Small RNAs comprise two major RNA classes, short interfering RNAs (siRNAs) and microRNAs (miRNAs). Efficient and reliable detection and quantification of small RNA expression has become an essential step in understanding their roles in specific cells and tissues. Here we provide protocols for the detection of miRNAs by stem-loop RT-PCR. This method enables fast and reliable miRNA expression profiling from as little as 20 pg of total RNA extracted from plant tissue and is suitable for high-throughput miRNA expression analysis. In addition, this method can be used to detect other classes of small RNAs, provided the sequence is known and their GC contents are similar to those specific for miRNAs.
Resumo:
Design process phases of development, evaluation and implementation were used to create a garment to simultaneously collect reliable data of speech production and intensity of movement of toddlers (18-36 months). A series of prototypes were developed and evaluated that housed accelerometer-based motion sensors and a digital transmitter with microphone. The approved test garment was a top constructed from loop-faced fabric with interior pockets to house devices. Extended side panels allowed for sizing. In total, 56 toddlers (28 male; 28 female; 16-36 months of age) participated in the study providing pilot and baseline data. The test garment was effective in collecting data as evaluated for accuracy and reliability using ANOVA for accelerometer data, transcription of video for type of movement, and number and length of utterances for speech production. The data collection garment has been implemented in various studies across disciplines.
Resumo:
Port-Hamiltonian Systems (PHS) have a particular form that incorporates explicitly a function of the total energy in the system (energy function) and also other functions that describe structure of the system in terms of energy distribution. For PHS, the product of the input and output variables gives the rate of energy change. This type of systems have the property that under certain conditions on the energy function, the system is passive; and thus, stable. Therefore, if one can design a controller such that the closed-loop system retains - or takes - a PHS form, such closed-loop system will inherit the properties of passivity and stability. In this paper, the classical model of marine craft is put into a PHS form. It is shown that models used for positioning control do not have a PHS form due to a kinematic transformation, but a control design can be done such that the closed-loop system takes a PHS form. It is further shown how integral action can be added and how the PHS-form can be exploited to provide a procedure for control design that ensures passivity and thus stability.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.