337 resultados para Systems engineering
Resumo:
The reliable operation of the electrical system at Callide Power Station is of extreme importance to the normal everyday running of the Station. This study applied the principles of reliability to do an analysis on the electrical system at Callide Power Station. It was found that the level of expected outage cost increased exponentially with a declining level of maintenance. Concluding that even in a harsh economic electricity market where CS Energy tries and push their plants to the limit, maintenance must not be neglected. A number of system configurations were found to increase the reliability of the system and reduce the expected outage costs. A number of other advantages were identified as a result of using reliability principles to do this study on the Callide electrical system configuration.
Resumo:
This paper presents a reliability assessment of a substation, part of the Queensland transmission network in Australia. As part of a maintenance considerations, this study utilises the substation reliability assessment package STAREL to quantitatively compare the reliability improvement achieved by two circuit breaker reinforcement alternatives for Swanbank circuit breaker replacement or refurbishment. Substation reliability is interpreted on the basis of outage frequency and outage duration indices for each individual transmission line terminated in Swanbank 'B' substation. By considering the reliability indices in this paper with the cost associated conducted by POWERLINK Queensland, a Swanbank 'B' reinforcement alternative can be selected that optimises both transmission line security and the costs incurred in achieving it.
Resumo:
Reliability is an integral component of modern power system design, planning and management. This paper uses the Markov approach to substation reliability evaluation using dedicated reliability software. This technique was applied to yield reliability indices for an existing and important substation in the POWERLINK QUEENSLAND 275 kV transmission network. Reliability indices were also determined for several reinforcement alternatives for this substation with the aim of improving substation reliability. The economic feasibility of achieving higher levels of reliability was also taken into account.
Resumo:
This paper describes a new approach to establish the probabilistic cable rating based on cable thermal environment studies. Knowledge of cable parameters has been well established. However the environment in which the cables are buried is not so well understood. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Based on the long-term continuous field data for more than 4 years, a probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. Hence, a probabilistic cable rating can be established based on monthly probabilistic distribution of thermal resistivity
Resumo:
Power system restoration after a large area outage involves many factors, and the procedure is usually very complicated. A decision-making support system could then be developed so as to find the optimal black-start strategy. In order to evaluate candidate black-start strategies, some indices, usually both qualitative and quantitative, are employed. However, it may not be possible to directly synthesize these indices, and different extents of interactions may exist among these indices. In the existing black-start decision-making methods, qualitative and quantitative indices cannot be well synthesized, and the interactions among different indices are not taken into account. The vague set, an extended version of the well-developed fuzzy set, could be employed to deal with decision-making problems with interacting attributes. Given this background, the vague set is first employed in this work to represent the indices for facilitating the comparisons among them. Then, a concept of the vague-valued fuzzy measure is presented, and on that basis a mathematical model for black-start decision-making developed. Compared with the existing methods, the proposed method could deal with the interactions among indices and more reasonably represent the fuzzy information. Finally, an actual power system is served for demonstrating the basic features of the developed model and method.
Resumo:
In this paper, a new comprehensive planning methodology is proposed for implementing distribution network reinforcement. The load growth, voltage profile, distribution line loss, and reliability are considered in this procedure. A time-segmentation technique is employed to reduce the computational load. Options considered range from supporting the load growth using the traditional approach of upgrading the conventional equipment in the distribution network, through to the use of dispatchable distributed generators (DDG). The objective function is composed of the construction cost, loss cost and reliability cost. As constraints, the bus voltages and the feeder currents should be maintained within the standard level. The DDG output power should not be less than a ratio of its rated power because of efficiency. A hybrid optimization method, called modified discrete particle swarm optimization, is employed to solve this nonlinear and discrete optimization problem. A comparison is performed between the optimized solution based on planning of capacitors along with tap-changing transformer and line upgrading and when DDGs are included in the optimization.
Resumo:
A new control method for battery storage to maintain acceptable voltage profile in autonomous microgrids is proposed in this article. The proposed battery control ensures that the bus voltages in the microgrid are maintained during disturbances such as load change, loss of micro-sources, or distributed generations hitting power limit. Unlike the conventional storage control based on local measurements, the proposed method is based on an advanced control technique, where the reference power is determined based on the voltage drop profile at the battery bus. An artificial neural network based controller is used to determine the reference power needed for the battery to hold the microgrid voltage within regulation limits. The pattern of drop in the local bus voltage during power imbalance is used to train the controller off-line. During normal operation, the battery floats with the local bus voltage without any power injection. The battery is charged or discharged during the transients with a high gain feedback loop. Depending on the rate of voltage fall, it is switched to power control mode to inject the reference power determined by the proposed controller. After a defined time period, the battery power injection is reduced to zero using slow reverse-droop characteristics, ensuring a slow rate of increase in power demand from the other distributed generations. The proposed control method is simulated for various operating conditions in a microgrid with both inertial and converter interfaced sources. The proposed battery control provides a quick load pick up and smooth load sharing with the other micro-sources in a disturbance. With various disturbances, maximum voltage drop over 8% with conventional energy storage is reduced within 2.5% with the proposed control method.
Resumo:
Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).
Resumo:
In deregulated versions of free-market electricity, producers will be free to send power along other utilities. The price of power strongly depends and fluctuates according to mutual benefit index of both supplier and consumer. In such a situation, strong interaction among utilities may cause instabilities in the system. As the frequency of market-based dispatch increases market forces tend to destabilize the stable system dynamics depending on the value of Ks/τλ(market dependent parameter) ratio. This tends to destabilize the coupled dynamics. The implementation of TCSC can effectively damp the inter area modes of oscillations of the coupled market system.
Resumo:
Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.
Resumo:
Power system operation and planning are facing increasing uncertainties especially with the deregulation process and increasing demand for power. Probabilistic power system stability assessment and probabilistic power system planning have been identified by EPRI as one of the important trends in power system operations and planning. Probabilistic small signal stability assessment studies the impact of system parameter uncertainties on system small disturbance stability characteristics. Researches in this area have covered many uncertainties factors such as controller parameter uncertainties and generation uncertainties. One of the most important factors in power system stability assessment is load dynamics. In this paper, composite load model is used to consider the uncertainties from load parameter uncertainties impact on system small signal stability characteristics. The results provide useful insight into the significant stability impact brought to the system by load dynamics. They can be used to help system operators in system operation and planning analysis.
Resumo:
This paper focuses on the super/sub-synchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated
Resumo:
This paper focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the active power and the DC capacitor voltage control of the Doubly Fed Induction Generator (DFIG) based wind generator. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings of the DFIG system is also investigated. The results of the time domain simulation studies are presented to elucidate the effectiveness of the TS-fuzzy controller compared with conventional PI controller in the DFIG system. The proposed TS-fuzzy controller can improve the fault ride through capability of DFIG compared to the conventional PI controller