220 resultados para Steel.
Resumo:
Steel columns in frame structure always carry heavy upcoming compressive forces. As a consequence, axial shortening becomes a common phenomenon in a multistoried steel structure. A 100 storied steel structure is analyzed in SAP2000 to study the magnitude overall effects of column shortening. It was found from the study that the maximum axial shortening occurs at the columns of top storey of the steel structure and at the columns of bottom storey, the axial deformation is negligible. The increasing rate of axial shortening is significant at the initial levels. However, at the upper levels, the amount of axial shortening in steel columns differs insignificantly. In the selected rigid frame structure, the axial shortening of adjacent steel columns is found to influence significantly the differential shortening of the structure. The consequent effect of differential shortening leads to develop excessive stress in the corner joints which ultimately hamper the normal behavior of the structural systems. The results are discussed elaborately in the paper.
Resumo:
We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm(-1) and 1350 cm(-1), respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.
Resumo:
This paper presents a combined experimental, numerical, and theoretical study on the mechanical behaviors of track-shaped concrete-filled steel tubular (SCFRT) stub columns stiffened by rebars under compressive load. A total of 18 track-shaped concrete-filled steel tubular specimens including 12 specimens stiffened by rebars and 6 non-stiffened counterparts are tested, with consideration of parameters including flakiness ratio, concrete strength, and stiffeners. Failure pattern, bearing capacity, and ductility are all analyzed and discussed based on the experimental results. The numerical simulation by finite element (FE) software ABAQUS is also conducted. Based on both experimental and numerical results, theoretical formula to predict the load-bearing capacity of SCFRT stub columns subjected to axial compression loading is established according to the superposition principle of ultimate load-bearing capacity with rational simplification. The proposed theoretical method provides accurate predictions on the load bearing capacity by comparing with experimental results from 18 groups of specimens.
Resumo:
Usage of new smart materials in retrofitting of structures has become popular within last decade. Carbon fiber reinforced polymer (CFRP) has been widely used in retrofitting and strengthening of concrete structures and its usage in metallic structures is still in the developing stage. The variation of mechanical properties of CFRP and the consequent effects on strengthening and retrofitting CFRP systems are yet to be investigated under different loading and environmental conditions. This paper presents the results of CFRP strengthened and retrofitted corroded steel plate double strap joints under tension. An accelerated corrosion cell has been developed to accelerate the corrosion of the steel samples and CFRP strengthened samples. The results show a direct comparison of bond characteristics of CFRP strengthened and retrofitted steel double strap joints.
Resumo:
Light gauge steel frame (LSF) wall systems are increasingly used in residential and commercial buildings as load bearing and non-load bearing elements. Conventionally, the fire resistance ratings of such building elements are determined using approximate prescriptive methods based on limited standard fire tests. However, recent studies have shown that in some instances real building fire time-temperature curves could be more severe than the standard fire curve, in terms of maximum temperature and rate of temperature rise. This has caused problems for safe evacuation and rescue activities, and in some instances has also lead to the collapse of buildings earlier than the prescribed fire resistance. Therefore a detailed research study into the performance of LSF wall systems under both standard fire and realistic fire conditions was undertaken using full scale fire tests to understand the fire performance of different LSF wall configurations. Both load bearing and non-load bearing full scale fire tests were performed on LSF walls configurations which included single layer, double layer, externally insulated wall panels made up of different steel sections and thicknesses of gypsum plasterboards. The non-load bearing fire test results were utilized to understand the factors affecting the fire resistance of LSF walls, while loading bearing fire test results led to development of simplified methods to predict the fire resistance ratings of load bearing LSF walls exposed to both standard and realistic design fires. This paper presents the results of full scale experimental study and highlights the effects of standard and realistic fire conditions on fire performance of LSF walls.
Resumo:
Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.
Resumo:
The durability of carbon fibre reinforced polymer (CFRP) strengthened steel circular hollow section (CHS) members has now become a real challenge to researchers. In addition, various parameters that may affect the durability of such members have not been revealed yet. This paper presents brief experimental results and the first finite element (FE) approach of CFRP strengthened steel CHS beams conditioned in simulated sea water, along with an accelerated corrosion environment at ambient (24 OC ± 4 OC) and 50 OC temperatures. The beams were loaded to failure under four-point bending. It was found that the strength and stiffness reduced significantly after conditioning in an accelerated corrosion environment. Numerical simulation is implemented using the ABAQUS static general approach. A cohesive element was utilised to model the interface element and an 8-node quadrilateral in-plane general-purpose continuum shell was used to model CFRP elements. A mixed mode cohesive law was deployed for all the three components of stresses in the proposed FE approach, which were one normal component and two shear components. The validity of the FE models was ascertained by comparing the ultimate load and load vs deflection response from experimental results. A range of parametric studies were conducted to investigate the effects of bond length, adhesive types, thickness and diameter of tubes. The results of parametric studies indicated that the adhesive with high tensile modulus performed better and durability design factors varied from section to section.
Tribological properties of γ-Y2Si2O7 ceramic against AISI 52100 steel and Si3N4 ceramic counterparts
Resumo:
Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on singlephase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5-15N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53-0.63 against AISI 52100 steel and between 0.51-0.56 against Si3N4 ceramic. We found thatwear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10-4mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.
Resumo:
Concrete-filled double skin tube (CFDST) is a creative innovation of steel-concrete-steel composite construction, formed by two concentric steel tubes separated by a concrete filler. Over the recent years, this column form has been widely used as a new sustainable alternative to existing structural bridge piers and building columns. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, physical tests on full scale columns were performed using an innovative horizontal impact testing system to obtain the failure modes, the time history of the impact force, reaction forces and global lateral deflection as well as permanent local buckling profile of the columns. The experimental testing was complemented and supplemented by developing and using an advanced finite element analysis model. The model was validated by comparing the numerical results against experimental data. The findings of this study will serve as a benchmark reference for future analysis and design of CFDST columns.
Resumo:
Stress- and strain-controlled tests of heat treated high-strength rail steel (Australian Standard AS1085.1) have been performed in order to improve the characterisation of the said material׳s ratcheting and fatigue wear behaviour. The hardness of the rail head material has also been studied and it has been found that hardness reduces considerably below four-millimetres from the rail top surface. Historically, researchers have used test coupons with circular cross-sections to conduct cyclic load tests. Such test coupons, typically five-millimetres in gauge diameter and ten‐millimetres in grip diameter, are usually taken from the rail head sample. When there is considerable variation of material properties over the cross-section it becomes likely that localised properties of the rail material will be missed. In another case from the literature, disks 47 mm in diameter for a twin-disk rolling contact test machine were obtained directly from the rail sample and used to validate ratcheting and rolling contact fatigue wear models. The question arises: How accurate are such tests, especially when large material property gradients exist? In this research paper, the effects of rail sampling location on the ratcheting behaviour of AS1085.1 rail steel were investigated using rectangular-shaped specimens obtained at four different depths to observe their respective cyclic plasticity behaviour. The microstructural features of the test coupons were also analysed, especially the pearlite inter-lamellar spacing which showed strong correlation with both hardness and cyclic plasticity behaviour of the material. This work ultimately provides new data and testing methodology to aid the selection of valid parameters for material constitutive models to better understand rail surface ratcheting and wear.