227 resultados para Slow cooling rate
Resumo:
In this paper, we present a new approach for velocity vector imaging and time-resolved measurements of strain rates in the wall of human arteries using MRI and we prove its feasibility on two examples: in vitro on a phantom and in vivo on the carotid artery of a human subject. Results point out the promising potential of this approach for investigating the mechanics of arterial tissues in vivo.
Resumo:
Commercial environments may receive only a fraction of expected genetic gains for growth rate as predicted from the selection environment This fraction is the result of undesirable genotype-by-environment interactions (G x E) and measured by the genetic correlation (r(g)) of growth between environments. Rapid estimates of genetic correlation achieved in one generation are notoriously difficult to estimate with precision. A new design is proposed where genetic correlations can be estimated by utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a single female. We compare a traditional phenotype analysis of growth to a threshold model where only the largest fish are genotyped for sire identification. The threshold model was robust to differences in family mortality differing up to 30%. The design is unique as it negates potential re-ranking of families caused by an interaction between common maternal environmental effects and growing environment. The design is suitable for rapid assessment of G x E over one generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. Different design scenarios were tested for bias and accuracy with a range of heritability values, number of half-sib families created, number of progeny within each full-sib family, number of fish genotyped, number of fish stocked, differing family survival rates and at various simulated genetic correlation levels
Resumo:
So far, most Phase II trials have been designed and analysed under a frequentist framework. Under this framework, a trial is designed so that the overall Type I and Type II errors of the trial are controlled at some desired levels. Recently, a number of articles have advocated the use of Bavesian designs in practice. Under a Bayesian framework, a trial is designed so that the trial stops when the posterior probability of treatment is within certain prespecified thresholds. In this article, we argue that trials under a Bayesian framework can also be designed to control frequentist error rates. We introduce a Bayesian version of Simon's well-known two-stage design to achieve this goal. We also consider two other errors, which are called Bayesian errors in this article because of their similarities to posterior probabilities. We show that our method can also control these Bayesian-type errors. We compare our method with other recent Bayesian designs in a numerical study and discuss implications of different designs on error rates. An example of a clinical trial for patients with nasopharyngeal carcinoma is used to illustrate differences of the different designs.
Resumo:
Records of shrimp growth and water quality made during 12 crops from each of 48 ponds, over a period of 6.5 years, were provided by a Queensland, Australia, commercial shrimp farm, These data were analysed with a new growth model derived from the Gompertz model. The results indicate that water temperature, mortality and pond age significantly affect growth rates. After 180 days, shrimp reach 34 g at constant 30 degrees C, but only 15 g after the same amount of time at 20 degrees C. Mortality, through thinning the density of shrimp in the ponds, increased the growth rate, but the effect is small. With continual production, growth rates at first remained steady, then appeared to decrease for the sixth and seventh crop, after which they have increased steadily with each crop. It appears that conservative pond management, together with a gradual improvement in husbandry techniques, particularly feed management, brought about this change. This has encouraging implications for the long-term sustainability of the farming methods used. The growth model can be used to predict productivity, and hence, profitability, of new aquaculture locations or new production strategies.
Resumo:
This report describes the development and simulation of a variable rate controller for a 6-degree of freedom nonlinear model. The variable rate simulation model represents an off the shelf autopilot. Flight experiment involves risks and can be expensive. Therefore a dynamic model to understand the performance characteristics of the UAS in mission simulation before actual flight test or to obtain parameters needed for the flight is important. The control and guidance is implemented in Simulink. The report tests the use of the model for air search and air sampling path planning. A GUI in which a set of mission scenarios, in which two experts (mission expert, i.e. air sampling or air search and an UAV expert) interact, is presented showing the benefits of the method.
Resumo:
Background: Standard methods for quantifying IncuCyte ZOOM™ assays involve measurements that quantify how rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area. We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To achieve this we calibrate standard data available from IncuCyte ZOOM™ images to the solution of the Fisher-Kolmogorov model. Results: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with proliferation rate, λ, and carrying capacity density, K. By analysing temporal changes in cell density in several subregions located well-behind the initial position of the leading edge we estimate λ and K. Given these estimates, we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM™ assay and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM™ assays using PC-3 prostate cancer cells and obtain estimates of D, λ and K. Comparing estimates of D, λ and K for a control assay with estimates of D, λ and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively unaffected by EGF. Conclusions: Our approach for estimating D, λ and K from an IncuCyte ZOOM™ assay provides more detail about cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the addition of growth factors affects these processes individually.
Resumo:
To evaluate the underreporting rate of death -cause data in Shandong province during 2012 to 2013 by capture -mark -recapture method and to provide the base for health strategy. Methods All counties were divided into 5 stratifications according the death rates of 2012, and 14 counties were selected, then 3 towns or streets were selected in each country, 10 villages or neighborhood committees were selected in each town (street). The death data collected from security bureau and civil affairs bureau were compared with the reporting death data from the National Cause of Death Surveillance, and the underreporting rate was calculated. Results In present study, 6 929 death cases were collected, it was found that 1 556 cases were underreported. The death cases estimated by CMR method were 6 227 cases (95%CI: 7 593-7 651), and the average underreporting rate was 23.15%. There were significantly differences between different stratifications (P<0.01). The underreporting rate in 0-4 years old group was 56.93%, the male underreporting rate was 22.31% and the female underreporting rate was 24.09%. There was no significant difference between male and female groups (P>0.05). Conclusion There is an obvious underreport in the cause of death surveillance of Shandong province, and the underreporting rates are different among the 5 stratifications. The underreporting rate is higher in 0-4 years old group, and the investigation of the death cause surveillance for young residents is not perfect in some countries. The investigation quality of the death cause surveillance should be improved, increasing the integrity of the report data and adjusting the mortalities in different stratifications for obtaining a accurate mortality in Shandong province.
Resumo:
The lithium-ion exchange rate capability of various commercial graphite materials are evaluated using galvanostatic charge/discharge cycling in a half-cell configuration over a wide range of C-rates (0.1 similar to 60C). The results confirm that graphite is capable of de-intercalating stored charge at high rates, but has a poor intercalating rate capability. Decreasing the graphite coating thickness leads to a limited rate performance improvement of the electrode. Reducing the graphite particle size shows enhanced C-rate capability but with increased irreversible capacity loss (ICL). It is demonstrated that the rate of intercalation of lithium-ions into the graphite is significantly limited compared with the corresponding rate of de-intercalation at high C-rates. For the successful utilisation of commercially available conventional graphite as a negative electrode in a lithium-ion capacitor (LIC), its intercalation rate capability needs to be improved or oversized to accommodate high charge rates.
Resumo:
A 59-year-old man was mistakenly prescribed Slow-Na instead of Slow-K due to incorrect selection from a drop-down list in the prescribing software. This error was identified by a pharmacist during a home medicine review (HMR) before the patient began taking the supplement. The reported error emphasizes the need for vigilance due to the emergence of novel look-alike, sound-alike (LASA) drug pairings. This case highlights the important role of pharmacists in medication safety.
Resumo:
This thesis introduces a new animal model, kangaroo, to biomechanical investigations of shoulder cartilage research. It examines the effect of cartilage structure and constituents on tissue behavior and its adaptation to mechanical loading. In doing so, the study explains the relationship of tissue's functional behaviors to its structure and constituents which has important implications for tissue engineering strategies catering joint specific cartilage tissue generation.
Resumo:
Grape drying is a slow and energy intensive process because the waxy peel has low permeability to moisture. Therefore, peel chemical and physical pretreatments are considered before drying in order to facilitate water diffusion. However, they cause heterogeneity in the waxes removal and problems during shelf-life. In this paper an alternative abrasive pretreatment of grape peel, for enhancing the drying rate and preserving the samples, was applied to Red Globe grapes. Convective drying experiments were carried out at 40-70 Centigrade and at 2.3 m/s air velocity. The effect of wax abrasive pretreatment on the drying kinetics and quality parameters of raisins was investigated. The results were compared with those of samples pretreated by dipping in alkaline ethyl oleate solution and untreated grapes. All the dried samples are darker than fresh one and shrunked. The samples pretreated by peel abrasion and dried at 50 centigrade showed the lowest color changes, less shrinkage and the best rehydration capacity. The drying kinetics and shrinkage curves were also analyzed using some commonly available empirical models.
Resumo:
This paper investigates the short-run effects of economic growth on carbon dioxide emissions from the combustion of fossil fuels and the manufacture of cement for 189 countries over the period 1961-2010. Contrary to what has previously been reported, we conclude that there is no strong evidence that the emissions-income elasticity is larger during individual years of economic expansion as compared to recession. Significant evidence of asymmetry emerges when effects over longer periods are considered. We find that economic growth tends to increase emissions not only in the same year, but also in subsequent years. Delayed effects - especially noticeable in the road transport sector - mean that emissions tend to grow more quickly after booms and more slowly after recessions. Emissions are more sensitive to fluctuations in industrial value added than agricultural value added, with services being an intermediate case. On the expenditure side, growth in consumption and growth in investment have similar implications for national emissions. External shocks have a relatively large emissions impact, and the short-run emissions-income elasticity does not appear to decline as incomes increase. Economic growth and emissions have been more tightly linked in fossil-fuel rich countries.
Resumo:
Motivated by a problem from fluid mechanics, we consider a generalization of the standard curve shortening flow problem for a closed embedded plane curve such that the area enclosed by the curve is forced to decrease at a prescribed rate. Using formal asymptotic and numerical techniques, we derive possible extinction shapes as the curve contracts to a point, dependent on the rate of decreasing area; we find there is a wider class of extinction shapes than for standard curve shortening, for which initially simple closed curves are always asymptotically circular. We also provide numerical evidence that self-intersection is possible for non-convex initial conditions, distinguishing between pinch-off and coalescence of the curve interior.
Resumo:
The cyclic-oxidation behavior of Ti3SiC2-base material was studied at 1100°C in air. Scale spallation and weight loss were not observed in the present tests and the weight gain would just continue if the experiments were not interrupted. The present results demonstrated that the scale growth on Ti3SiC2-base material obeyed a parabolic rate law up to 20 cycles. It then changed to a linear rate with further increasing cycles. The scales formed on the Ti3SiC2base material were composed of an inward-growing, fine-grain mixture of Ti022 + SiO2 and an outward-growing, coarse-grain TiO2. Theoretical calculations show that the mismatch in thermal expansion coefficients between the inner scale and Ti3SiC2-base matrix is small. The outer TiO2 layer was under very low compressive stress, while the inner TiO2 + SiO2 layer was under tensile stress during cooling. Scale spaliation is, therefore, not expected and the scale formed on Ti3SiC2-base material is adherent and resistant to cyclic oxidation.