442 resultados para Sequential Gaussian simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new decision-making tool that will assist designers in the selection of appropriate daylighting solutions for buildings in tropical locations has been previously proposed by the authors. Through an evaluation matrix that prioritizes the parameters that best respond to the needs of tropical climates (e.g. reducing solar gain and protection from glare) the tool determines the most appropriate devices for specific climate and building inputs. The tool is effective in demonstrating the broad benefits and limitations of the different daylight strategies for buildings in the tropics. However for thorough analysis and calibration of the tool, validation is necessary. This paper presents a first step in the validation process. RADIANCE simulations were conducted to compare simulation performance with the performance predicted by the tool. To this end, an office building case study in subtropical Brisbane, Australia, and five different daylighting devices including openings, light guiding systems and light transport systems were simulated. Illuminance, light uniformity, daylight penetration and glare analysis were assessed for each device. The results indicate the tool can appropriately rank and recommend daylighting strategies based on specific building inputs for tropical and subtropical regions, making it a useful resource for designers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach for modeling passenger flows in airport terminals by a set of devised advanced traits of passengers is proposed. Advanced traits take into account a passenger’s cognitive preferences which would be the underlying motivations of route-choice decisions. Basic traits are the status of passengers such as travel class. Although the activities of passengers are normally regarded as stochastic and sometimes unpredictable, we advise that real scenarios of passenger flows are basically feasible to be compared with virtual simulations in terms of tactical route-choice decision-making by individual personals. Inside airport terminals, passengers are goal-directed and not only use standard processing check points but also behave discretionary activities during the course. In this paper, we integrated discretionary activities in the study to fulfill full-range of passenger flows. In the model passengers are built as intelligent agents who possess a bunch of initial basic traits and then can be categorized into ten distinguish groups in terms of route-choice preferences by inferring the results of advanced traits. An experiment is executed to demonstrate the capability to facilitate predicting passenger flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent management research has evidenced the significance of organizational social networks, and communication is believed to impact the interpersonal relationships. However, we have little knowledge on how communication affects organizational social networks. This paper studies the dynamics between organizational communication patterns and the growth of organizational social networks. We propose an organizational social network growth model, and then collect empirical data to test model validity. The simulation results agree well with the empirical data. The results of simulation experiments enrich our knowledge on communication with the findings that organizational management practices that discourage employees from communicating within and across group boundaries have disparate and significant negative effect on the social network’s density, scalar assortativity and discrete assortativity, each of which correlates with the organization’s performance. These findings also suggest concrete measures for management to construct and develop the organizational social network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Foot ulcers are a frequent reason for diabetes-related hospitalisation. Clinical training is known to have a beneficial impact on foot ulcer outcomes. Clinical training using simulation techniques has rarely been used in the management of diabetes-related foot complications or chronic wounds. Simulation can be defined as a device or environment that attempts to replicate the real world. The few non-web-based foot-related simulation courses have focused solely on training for a single skill or “part task” (for example, practicing ingrown toenail procedures on models). This pilot study aimed to primarily investigate the effect of a training program using multiple methods of simulation on participants’ clinical confidence in the management of foot ulcers. Methods: Sixteen podiatrists participated in a two-day Foot Ulcer Simulation Training (FUST) course. The course included pre-requisite web-based learning modules, practicing individual foot ulcer management part tasks (for example, debriding a model foot ulcer), and participating in replicated clinical consultation scenarios (for example, treating a standardised patient (actor) with a model foot ulcer). The primary outcome measure of the course was participants’ pre- and post completion of confidence surveys, using a five-point Likert scale (1 = Unacceptable-5 = Proficient). Participants’ knowledge, satisfaction and their perception of the relevance and fidelity (realism) of a range of course elements were also investigated. Parametric statistics were used to analyse the data. Pearson’s r was used for correlation, ANOVA for testing the differences between groups, and a paired-sample t-test to determine the significance between pre- and post-workshop scores. A minimum significance level of p < 0.05 was used. Results: An overall 42% improvement in clinical confidence was observed following completion of FUST (mean scores 3.10 compared to 4.40, p < 0.05). The lack of an overall significant change in knowledge scores reflected the participant populations’ high baseline knowledge and pre-requisite completion of web-based modules. Satisfaction, relevance and fidelity of all course elements were rated highly. Conclusions: This pilot study suggests simulation training programs can improve participants’ clinical confidence in the management of foot ulcers. The approach has the potential to enhance clinical training in diabetes-related foot complications and chronic wounds in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers of motor vehicles exhibit safe behaviours. Several car-following models are used in various micro-simulation models. This research compares the mainstream car following models’ capabilities of emulating precise driver behaviour parameters such as headways and Time to Collisions. The comparison firstly illustrates which model is more robust in the metric reproduction. Secondly, the study conducted a series of sensitivity tests to further explore the behaviour of each model. Based on the outcome of these two steps exploration of the models, a modified structure and parameters adjustment for each car-following model is proposed to simulate more realistic vehicle movements, particularly headways and Time to Collision, below a certain critical threshold. NGSIM vehicle trajectory data is used to evaluate the modified models performance to assess critical safety events within traffic flow. The simulation tests outcomes indicate that the proposed modified models produce better frequency of critical Time to Collision than the generic models, while the improvement on the headway is not significant. The outcome of this paper facilitates traffic safety assessment using microscopic simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1=n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal. Funding source Cancer Australia (Department of Health and Ageing) Research Grant 614217

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simulation-based training system for surgical wound debridement was developed and comprises a multimedia introduction, a surgical simulator (tutorial component), and an assessment component. The simulator includes two PCs, a haptic device, and mirrored display. Debridement is performed on a virtual leg model with a shallow laceration wound superimposed. Trainees are instructed to remove debris with forceps, scrub with a brush, and rinse with saline solution to maintain sterility. Research and development issues currently under investigation include tissue deformation models using mass-spring system and finite element methods; tissue cutting using a high-resolution volumetric mesh and dynamic topology; and accurate collision detection, cutting, and soft-body haptic rendering for two devices within the same haptic space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brief self-report symptom checklists are often used to screen for postconcussional disorder (PCD) and posttraumatic stress disorder (PTSD) and are highly susceptible to symptom exaggeration. This study examined the utility of the five-item Mild Brain Injury Atypical Symptoms Scale (mBIAS) designed for use with the Neurobehavioral Symptom Inventory (NSI) and the PTSD Checklist–Civilian (PCL–C). Participants were 85 Australian undergraduate students who completed a battery of self-report measures under one of three experimental conditions: control (i.e., honest responding, n = 24), feign PCD (n = 29), and feign PTSD (n = 32). Measures were the mBIAS, NSI, PCL–C, Minnesota Multiphasic Personality Inventory–2, Restructured Form (MMPI–2–RF), and the Structured Inventory of Malingered Symptomatology (SIMS). Participants instructed to feign PTSD and PCD had significantly higher scores on the mBIAS, NSI, PCL–C, and MMPI–2–RF than did controls. Few differences were found between the feign PCD and feign PTSD groups, with the exception of scores on the NSI (feign PCD > feign PTSD) and PCL–C (feign PTSD > feign PCD). Optimal cutoff scores on the mBIAS of ≥8 and ≥6 were found to reflect “probable exaggeration” (sensitivity = .34; specificity = 1.0; positive predictive power, PPP = 1.0; negative predictive power, NPP = .74) and “possible exaggeration” (sensitivity = .72; specificity = .88; PPP = .76; NPP = .85), respectively. Findings provide preliminary support for the use of the mBIAS as a tool to detect symptom exaggeration when administering the NSI and PCL–C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical simulation method for the Red Blood Cells’ (RBC) deformation is presented in this study. The two-dimensional RBC membrane is modeled by the spring network, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. Smoothed Particle Hydrodynamics (SPH) method is used to solve the Navier-Stokes equation coupled with the Plasma-RBC membrane and Cytoplasm- RBC membrane interaction. To verify the method, the motion of a single RBC is simulated in Poiseuille flow and compared with the results reported earlier. Typical motion and deformation mechanism of the RBC is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micro-circulation of blood plays an important role in human body by providing oxygen and nutrients to the cells and removing carbon dioxide and wastes from the cells. This process is greatly affected by the rheological properties of the Red Blood Cells (RBCs). Changes in the rheological properties of the RBCs are caused by certain human diseases such as malaria and sickle cell diseases. Therefore it is important to understand the motion and deformation mechanism of RBCs in order to diagnose and treat this kind of diseases. Although, many methods have been developed to explore the behavior of the RBCs in micro-channels, they could not explain the deformation mechanism of the RBCs properly. Recently developed Particle Methods are employed to explain the RBCs’ behavior in micro-channels more comprehensively. The main objective of this study is to critically analyze the present methods, used to model the RBC behavior in micro-channels, in order to develop a computationally efficient particle based model to describe the complete behavior of the RBCs in micro-channels accurately and comprehensively

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To fumigate grain stored in a silo, phosphine gas is distributed by a combination of diffusion and fan-forced advection. This initial study of the problem mainly focuses on the advection, numerically modelled as fluid flow in a porous medium. We find satisfactory agreement between the flow predictions of two Computational Fluid Dynamics packages, Comsol and Fluent. The flow predictions demonstrate that the highest velocity (>0.1 m/s) occurs less than 0.2m from the inlet and reduces drastically over one metre of silo height, with the flow elsewhere less than 0.002 m/s or 1% of the velocity injection. The flow predictions are examined to identify silo regions where phosphine dosage levels are likely to be too low for effective grain fumigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical study is carried out using large eddy simulation to study the heat and toxic gases released from fires in real road tunnels. Due to disasters about tunnel fires in previous decade, it attracts increasing attention of researchers to create safe and reliable ventilation designs. In this research, a real tunnel with 10 MW fire (which approximately equals to the heat output speed of a burning bus) at the middle of tunnel is simulated using FDS (Fire Dynamic Simulator) for different ventilation velocities. Carbone monoxide concentration and temperature vertical profiles are shown for various locations to explore the flow field. It is found that, with the increase of the longitudinal ventilation velocity, the vertical profile gradients of CO concentration and smoke temperature were shown to be both reduced. However, a relatively large longitudinal ventilation velocity leads to a high similarity between the vertical profile of CO volume concentration and that of temperature rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.