300 resultados para Salivary drug concentrations
Resumo:
Purpose: The therapeutic ratio for ionising radiation treatment of tumour is a trade-off between normal tissue side-effects and tumour control. Application of a radioprotector to normal tissue can reduce side-effects. Here we study the effects of a new radioprotector on the cellular response to radiation. Methylproamine is a DNA-binding radioprotector which, on the basis of published pulse radiolysis studies, acts by repair of transient radiation-induced oxidative species on DNA. To substantiate this hypothesis, we studied protection by methylproamine at both clonogenic survival and radiation-induced DNA damage, assessed by γH2AX (histone 2AX phosphorylation at serine 139) focus formation endpoints. Materials and methods: The human keratinocyte cell line FEP1811 was used to study clonogenic survival and yield of γH2AX foci following irradiation (137Cs γ-rays) of cells exposed to various concentrations of methylproamine. Uptake of methylproamine into cell nuclei was measured in parallel. Results: The extent of radioprotection at the clonogenic survival endpoint increased with methylproamine concentration up to a maximum dose modification factor (DMF) of 2.0 at 10 μM. At least 0.1 fmole/nucleus of methylproamine is required to achieve a substantial level of radioprotection (DMF of 1.3) with maximum protection (DMF of 2.0) achieved at 0.23 fmole/nucleus. The γH2AX focus yield per cell nucleus 45 min after irradiation decreased with drug concentration with a DMF of 2.5 at 10 μM. Conclusions: These results are consistent with the hypothesis that radioprotection by methylproamine is mediated by attenuation of the extent of initial DNA damage.
Resumo:
Angiogenesis is indispensable for solid tumor expansion, and thus it has become a major target of cancer research and anti-cancer therapies. Deciphering the arcane actions of various cell populations during tumor angiogenesis requires sophisticated research models, which could capture the dynamics and complexity of the process. There is a continuous need for improvement of existing research models, which engages interdisciplinary approaches of tissue engineering with life sciences. Tireless efforts to develop a new model to study tumor angiogenesis result in innovative solutions, which bring us one step closer to decipher the dubious nature of cancer. This review aims to overview the recent developments, current limitations and future challenges in three-dimensional tissue-engineered models for the study of tumor angiogenesis and for the purpose of elucidating novel targets aimed at anti-cancer drug discovery.
Resumo:
Solid medications are often crushed and mixed with food or thickened water to aid drug delivery for those who cannot or prefer not to swallow whole tablets or capsules. Dysphagic patients have the added problem of being unable to safely swallow thin fluids so water thickened with polysaccharides is used to deliver crushed medications and ensure safe swallowing. It is postulated that these polysaccharide systems may restrict drug release by reducing the diffusion of the drug into gastric fluids. METHODS By using a vertical diffusion cell separated with a synthetic membrane, the diffusion of a model drug (atenolol) was studied from a donor system containing the drug dispersed into thickened water with xanthan gum (concentration range from 0.005%-2.2%) into a receptor system containing simulated gastric fluid (SGF) at 37°C. The amount of drug transferred was measured over 8 hours and diffusion coefficients estimated using the Higuchi model approach. RESULTS Atenolol diffusion decreased with increasing xanthan gum concentration up to 1.0%, above which diffusion remained around 300 μ2s-1. The rheological measurements captured the influence of the structure and conformation of the polysaccharide in water on the movement and availability of the drug in SGF. DISCUSSION Dose form administration for dysphagic patients’ needs special attention from general practitioners, pharmacist and patients. Improving drug release of crushed tablets from thickening agents requires a reduction in the diffusion pathway (e.g. by decreasing drop size radius). This approach could make the drug available in SGF in a short time without compromising the mechanical aspects of thickening agents that guarantee safe swallowing.
Resumo:
Sortase A is a membrane enzyme responsible for the anchoring of surface-exposed proteins to the cell wall envelope of Gram-positive bacteria. As a well-studied member of the sortase subfamily catalysing the cell wall anchoring of important virulence factors to the surface of staphylococci, enterococci and streptococci, sortase A plays a critical role in Gram-positive bacterial pathogenesis. It is thus considered a promising target for the development of new anti-infective drugs that aim to interfere with important Gram-positive virulence mechanisms, such as adhesion to host tissues, evasion of host defences, and biofilm formation. The additional properties of sortase A as an enzyme that is not required for Gram-positive bacterial growth or viability and is conveniently located on the cell membrane making it more accessible to inhibitor targeting, constitute additional reasons reinforcing the view that sortase A is an ideal target for anti-virulence drug development. Many inhibitors of sortase A have been identified to date using high-throughput or in silico screening of compound libraries (synthetic or natural), and while many have proved useful tools for probing the action model of the enzyme, several are also promising candidates for the development into potent inhibitors. This review is focused on the most promising sortase A inhibitor compounds that are currently in development as leads towards a new class of anti-infective drugs that are urgently needed to help combat the alarming increase in antimicrobial resistance.
Resumo:
Background The population exposed to potentially hazardous substances through inappropriate and unsafe management practices related to disposal and recycling of end-of-life electrical and electronic equipment, collectively known as e-waste, is increasing. We aimed to summarise the evidence for the association between such exposures and adverse health outcomes. Methods We systematically searched five electronic databases (PubMed, Embase, Web of Science, PsycNET, and CINAHL) for studies assessing the association between exposure to e-waste and outcomes related to mental health and neurodevelopment, physical health, education, and violence and criminal behaviour, from Jan 1, 1965, to Dec 17, 2012, and yielded 2274 records. Of the 165 full-text articles assessed for eligibility, we excluded a further 142, resulting in the inclusion of 23 published epidemiological studies that met the predetermined criteria. All studies were from southeast China. We assessed evidence of a causal association between exposure to e-waste and health outcomes within the Bradford Hill framework. Findings We recorded plausible outcomes associated with exposure to e-waste including change in thyroid function, changes in cellular expression and function, adverse neonatal outcomes, changes in temperament and behaviour, and decreased lung function. Boys aged 8–9 years living in an e-waste recycling town had a lower forced vital capacity than did those living in a control town. Significant negative correlations between blood chromium concentrations and forced vital capacity in children aged 11 and 13 years were also reported. Findings from most studies showed increases in spontaneous abortions, stillbirths, and premature births, and reduced birthweights and birth lengths associated with exposure to e-waste. People living in e-waste recycling towns or working in e-waste recycling had evidence of greater DNA damage than did those living in control towns. Studies of the effects of exposure to e-waste on thyroid function were not consistent. One study related exposure to e-waste and waste electrical and electronic equipment to educational outcomes. Interpretation Although data suggest that exposure to e-waste is harmful to health, more well designed epidemiological investigations in vulnerable populations, especially pregnant women and children, are needed to confirm these associations. Funding Children's Health and Environment Program, Queensland Children's Medical Research Institute, The University of Queensland, Australia.
Resumo:
Reported homocysteine (HCY) concentrations in human serum show poor concordance amongst laboratories due to endogenous HCY in the matrices used for assay calibrators and QCs. Hence, we have developed a fully validated LC–MS/MS method for measurement of HCY concentrations in human serum samples that addresses this issue by minimising matrix effects. We used small volumes (20 μL) of 2% Bovine Serum Albumin (BSA) as surrogate matrix for making calibrators and QCs with concentrations adjusted for the endogenous HCY concentration in the surrogate matrix using the method of standard additions. To aliquots (20 μL) of human serum samples, calibrators or QCs, were added HCY-d4 (internal standard) and tris-(2-carboxyethyl) phosphine hydrochloride (TCEP) as reducing agent. After protein precipitation, diluted supernatants were injected into the LC–MS/MS. Calibration curves were linear; QCs were accurate (5.6% deviation from nominal), precise (CV% ≤ 9.6%), stable for four freeze–thaw cycles, and when stored at room temperature for 5 h or at −80 °C (27 days). Recoveries from QCs in surrogate matrix or pooled human serum were 91.9 and 95.9%, respectively. There was no matrix effect using 6 different individual serum samples including one that was haemolysed. Our LC–MS/MS method has satisfied all of the validation criteria of the 2012 EMA guideline.
Resumo:
This study examines whether memory of antidepressant direct-to-consumer (DTC) prescription drug advertising is associated with the public stigma attached to depression. Results indicate that those who better remember antidepressant DTC ads tend to have a higher perceived prevalence of depression (i.e., more people suffer from depression). And, the perceived prevalence of depression is inversely associated with the public stigma toward depression. That is, those who have a higher perceived prevalence of depression report that they are more supportive of and comfortable with people who have depression. The results suggest that the perceived prevalence of depression is a mediating variable that accounts for the relationship between memory of antidepressant DTC ads and the public stigma toward depression. The implications and limitations of the study, as an exploratory investigation, are discussed.
Resumo:
BACKGROUND The increasing cost of fossil fuels as well as the escalating social and industrial awareness of the environmental impacts associated with the use of fossil fuels has created the need for more sustainable fuel options. Bioethanol, produced from renewable biomass such as sugar and starch materials, is believed to be one of these options, and it is currently being harnessed extensively. However, the utilization of sugar and starch materials as feedstocks for bioethanol production creates a major competition with the food market in terms of land for cultivation, and this makes bioethanol from these sources economically less attractive. RESULT This study explores the suitability of microalgae (Chlorococum sp.) as a substrate for bioethanol production via yeast (Saccharomycesbayanus)under different fermentation conditions. Results show a maximum ethanol concentration of 3.83 g L -1 obtained from 10 g L-1 of lipid-extracted microalgae debris. CONCLUSION This productivity level (∼38% w/w), which is in keeping with that of current production systems endorses microalgae as a promising substrate for bioethanol production.
Resumo:
DNA may take a leading role in a future generation of blockbuster therapeutics. DNA has inherent advantages over other biomolecules such as protein, RNA and virus-like particles including safety, production simplicity and higher stability at ambient temperatures. Vaccination is the principal measure for preventing influenza and reducing the impact of pandemics; however, vaccines take up to 8-9 months to produce, and the global production capacity is woefully low. With production times as short as 2 weeks, improved safety and stability, bioprocess engineering developments, and the ability to perform numerous therapeutic roles, DNA has the potential to meet the demands of emerging and existing diseases. DNA is experiencing sharp growths in demand as indicated by its use in gene therapy trials and DNA vaccine related patents. Of particular interest for therapeutic use is plasmid DNA (pDNA), a form of non-genomic DNA that makes use of cellular machinery to express proteins or antigens. The production stages of fermentation and downstream purification are considered in this article. Forward looking approaches to purifying and delivering DNA are reported, including affinity chromatography and nasal inhalation. The place that pDNA may take in the preparation for and protection against pandemics is considered. If DNA therapeutics and vaccines prove to be effective, the ultimate scale of production will be huge which shall require associated bioprocess engineering research and development for purification of this large, unique biomolecule.
Resumo:
An effective means of facilitating DNA vaccine delivery to antigen presenting cells is through biodegradable microspheres. Microspheres offer distinct advantages over other delivery technologies by providing release of DNA vaccine in its bioactive form in a controlled fashion. In this study, biodegradable poly(D,L-lactide-coglycolide) (PLGA) microspheres containing polyethylenimine (PEI) condensed plasmid DNA (pDNA) were prepared using a 40 kHz ultrasonic atomization system. Process synthesis parameters, which are important to the scale-up of microspheres that are suitable for nasal delivery (i.e., less than 20 μm), were studied. These parameters include polymer concentration; feed flowrate; volumetric ratio of polymer and pDNA-PEI (plasmid DNA-polyethylenimine) complexes; and nitrogen to phosphorous (N/P) ratio. PDNA encapsulation efficiencies were predominantly in the range 82-96%, and the mean sizes of the particle were between 6 and 15 μm. The ultrasonic synthesis method was shown to have excellent reproducibility. PEI affected morphology of the microspheres, as it induced the formation of porous particles that accelerate the release rate of pDNA. The PLGA microspheres displayed an in vitro release of pDNA of 95-99% within 30 days and demonstrated zero order release kinetics without an initial spike of pDNA. Agarose electrophoresis confirmed conservation of the supercoiled form of pDNA throughout the synthesis and in vitro release stages. It was concluded that ultrasonic atomization is an efficient technique to overcome the key obstacles in scaling-up the manufacture of encapsulated vaccine for clinical trials and ultimately, commercial applications.
Resumo:
The maturing of the biotechnology industry and a focus on productivity has seen a shift from discovery science to small-scale bench-top research to higher productivity, large scale production. Health companies are aggressively expanding their biopharmaceutical interests, an expansion which is facilitated by biochemical and bioprocess engineering. An area of continuous growth is vaccines. Vaccination will be a key intervention in the case of an influenza pandemic. The global manufacturing capacity for fast turn around vaccines is currently woefully inadequate at around 300 million shots. As the prevention of epidemics requires > 80 % vaccination, in theory the world should currently be aiming for the ability to produce around 5.3 billion vaccines. Presented is a production method for the creation of a fast turn around DNA vaccine. A DNA vaccine could have a production time scale of as little as two weeks. This process has been harnessed into a pilot scale production system for the creation of a pre-clinical grade malaria vaccine in a collaborative project with the Coppel Lab, Department of Microbiology, Monash University. In particular, improvements to the fermentation, chromatography and delivery stages will be discussed. Consideration will then be given as to how the fermentation stage affects the mid and downstream processing stages.
Resumo:
Polybrominated diphenyl ethers (PBDEs), a common class of brominated flame retardants, are a ubiquitous part of our built environment, and for many years have contributed to improved public safety by reducing the flammability of everyday goods. Recently, PBDEs have come under increased international attention because of their potential to impact upon the environment and human health. Some PBDE compounds have been nominated for possible inclusion on the Stockholm Convention on Persistent Organic Pollutants, to which Australia is a Party. Work under the Stockholm Convention has demonstrated the capacity of some PBDEs to persist and accumulate in the environment and to be carried long distances. Much is unknown about the impact of PBDEs on living organisms, however recent studies show that some PBDEs can inhibit growth in colonies of plankton and algae and depress the reproduction of zooplankton. Laboratory mice and rats have also shown liver disturbances and damage to developing nervous systems as a result of exposure to PBDEs. In 2004, the Australian Government Department of the Environment and Water Resources began three studies to examine levels of PBDEs in aquatic sediments, indoor environments and human blood, as knowledge about PBDEs in Australia was very limited. The aim of these studies was to improve this knowledge base so that governments were in a better position to consider appropriate management actions. Due to the high costs for laboratory analysis of PBDEs, the number of samples collected for each study was limited and so caution is required when interpreting the findings. Nevertheless, these studies will provide governments with an indication of how prevalent PBDEs are in the Australian population and the environment and will also contribute to international knowledge about these chemicals. The Department of the Environment and Water Resources will be working closely with othergovernment agencies, industry and the community to investigate any further action that may be required to address PBDEs in Australia.
Resumo:
As negative employee attitudes towards alcohol and other drug (AOD) policies may have serious consequences for organizations, the present study examined demographic and attitudinal dimensions leading to employees’ perceptions of AOD policy effectiveness. Survey responses were obtained from 147 employees in an Australian agricultural organization. Three dimensions of attitudes towards AOD policies were examined: knowledge of policy features, attitudes towards testing, and preventative measures such as job design and organizational involvement in community health. Demographic differences were identified, with males and blue-collar employees reporting significantly more negative attitudes towards the AOD policy. Attitude dimensions were stronger predictors of perceptions of policy effectiveness than demographics, and the strongest predictor was preventative measures. This suggests that organizations should do more than design adequate and fair AOD policies, and take a more holistic approach to AOD impairment by engaging in workplace design to reduce AOD use and promote a consistent health message to employees and the community.
Resumo:
The study sought to explore the initial impact of the ACT's implementation of roadside oral fluid drug screening program. The results suggest that a number of individuals reported intentions to drug drive in the future. The classical deterrence theory variables of certainty of apprehension, severity and swiftness of sanctions were not predictive of intentions to drug drive in the future. In contrast, having avoided apprehension and having known of others that have avoided apprehension were predictive of intentions to drug drive in the future. Increasing perceptions of the certainty of apprehension, increased testing frequency, and increased awareness of the oral fluid drug screening program could potentially lead to reductions of drug driving and result in safer road environment for all ACT community members.
Resumo:
The New South Wales (NSW) Centre for Road Safety (CRS) called for research services to conduct a review of international policy and practice to address drug-driving. The project sought to provide Transport for NSW (TfNSW) with a comprehensive review of current and emerging international practices in this area1. This report is submitted by the Centre for Accident Research and Road Safety – Queensland (CARRS-Q)...