299 resultados para Retaining walls.
Resumo:
Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarising some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing. The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilisation and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.
Resumo:
Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarizing some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing. The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilization and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.
Resumo:
Attracting and retaining a skilled labour force is a critical yet complex issue for rural and remote communities. This article reports the findings of a study investigating the current approaches to attraction and retention in two separate Australian regions. Building on previously developed models, this research analyses the roles employers and wider communities are playing, or potentially could play, in addressing issues that influence labour shortages. The findings of this research highlight the complexities of labour attraction and retention and emphasise the need for communities and businesses to work together to overcome labour shortages in rural and remote locations.
Resumo:
Background The size of the carrier influences the aerosolization of drug from a dry powder inhaler (DPI) formulation. Currently, lactose monohydrate particles in a variety of sizes are preferably used in carrier based DPI formulations of various drugs; however, contradictory reports exist regarding the effect of the size of the carrier on the dispersion of drug. In this study we examined the influence of the intrinsic particle size of the polymeric carrier on the aerosolization of a model drug salbutamol sulphate (SS). Methods Four different sizes (20–150 lm) of polymer carriers were fabricated using solvent evaporation technique and the dispersion of SS particles from these carriers was measured by a Twin Stage Impinger (TSI). The size and morphological properties of polymer carriers were by laser diffraction and SEM, respectively. Results The FPF from these carriers was found to be increasing from 5.6% to 21.3% with increasing the carrier size. The FPF was found to be greater (21%) with the highest particle size of the carrier (150 lm). Conclusions The aerosolization of drug was dependent on the size of polymer carriers. The smaller size of the carrier resulted in lower FPF which was increased with increasing the carrier size. For a fixed mass of drug particles in a formulation, the mass of drug particles per unit area of carriers is higher in formulations containing the larger carriers, which leads to an increase in the dispersion of drug due to the increased mechanical forces occurred between the carriers and the device walls.
Resumo:
We report on an alternative OCGM interface for a bulletin board, where a user can pin a note or a drawing, and actually shares contents. Exploiting direct and continuous manipulations, opposite to discrete gestures, to explore containers, the proposed interface supports a more natural and immediate interaction. It manages also the presence of different simultaneous users, allowing for the creation of local multimedia contents, the connection to social networks, providing a suitable working environment for cooperative and collaborative tasks in a multi-touch setup, such as touch-tables, interactive walls or multimedia boards
Resumo:
Load bearing Light Gauge Steel Frame (LSF) walls are commonly made of conventional lipped channel sections and gypsum plasterboards. Recently, innovative steel sections such as hollow flange channel sections have been proposed as studs in LSF wall frames with a view to improve their fire resistance ratings. A series of full scale fire tests was then undertaken to investigate the fire performance of the new LSF wall systems under standard fire conditions. Test wall frames made of hollow flange section studs were lined with fire resistant gypsum plasterboards on both sides, and were subjected to increasing temperatures as given by the standard fire curve on one side. Both uninsulated and cavity insulated walls were tested with varying load ratios from 0.2 to 0.6. This paper presents the details of this experimental study on the fire performance of LSF walls and the results. Test results showed that the walls made of the new hollow flange channel section studs have a superior fire performance in comparison to that of lipped channel section stud walls. They also showed that the fire performance of cavity insulated walls was inferior to that of uninsulated walls. The reasons for this fire behaviour are described in this paper.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.
Resumo:
The world is increasingly moving towards more open models of publishing and communication. The UK government has demonstrated a firm commitment to ensuring that academic research outputs are made available to all who might benefit from access to them, and its open access policy attempts to make academic publications freely available to readers, rather than being locked behind pay walls or only available to researchers with access to well-funded university libraries. Open access policies have an important role to play in fostering an open innovation ecosystem and ensuring that maximum value is derived from investments in university-based research. But are we ready to embrace this change?
Resumo:
There has been significant interest in developing metal oxide films with high surface area-to-volume ratio nanostructures particularly in substantially increasing the performance of Pt/oxide/semiconductor Schottky-diode gas sensors. While retaining the surface morphology of these devices, they can be further improved by modifying their nanostructured surface with a thin metal oxide layer. In this work, we analyse and compare the electrical and hydrogen-sensing properties of MoO3 nanoplatelets coated with a 4 nm layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We explain in our study, that the presence of numerous defect traps at the surface (and the bulk) of the thin high-� layer causes a substantial trapping of charge during hydrogen adsorption. As a result, the interface between the Pt electrode and the thin oxide layer becomes highly polarised. Measurement results also show that the nanoplatelets coated with Ta2O5 can enable the device to be more sensitive (a larger voltage shift under hydrogen exposure) than those coated with La2O3.
Resumo:
“The challenge today is not just retaining talented people, but fully engaging them, capturing their minds and hearts at each stage of their work lives” (Kaye & Jordan-Evans, 2003, p. 11). Engaged employees produce positive work outcomes such as increased productivity satisfaction, and reduced turnover (Kahn, 1990, 1992; Saks, 2006). Engaged employees also impact on customers and co-workers’ positive experiences such as increased customer satisfaction (Wagner & Harter, 2006). Further, engaged employees demonstrate higher levels of trust in management and share more positive experiences with co-workers than disengage employees (Payne, Cangemi, Fuqua, & Muhleakamp, 1998). Past studies show that having a high proportion of engaged employees increases organizational performance, such as profitability and reputation (Wagner & Harter, 2006; Fleming & Asplund, 2007; Ketter, 2008). Having experienced the benefits of having engaged employees, organizations have become more aware of this issue and have been focusing on facilitating engagement climate within workplaces. Recently, an interest in positive psychology, instead of negative aspects of human behaviours, has become a focus for both scholars and practitioners. The trend towards positive psychology has led to the emergence of the concept of work engagement(Chughtai & Buckley, 2008). This article reviews literatures in the area of positive psychology and psychological stress, and discusses how organizations can increase work engagement among their organizational members. The remainder of this article is organised in four sections. First, we define work engagement as used in this article and psychological outcomes of work engagement. Second, we identify ways to increase work engagement among employees. Following this, we further discuss how gender roles influence individuals’ engagement at work. The final sections conclude the paper with a discussion of the practical implications.
Resumo:
Because of their limited number of senior positions and fewer alternative career paths, small businesses have a more difficult time attracting and retaining skilled information systems (IS) staff and are thus dependent upon external expertise. Small businesses are particularly dependent on outside expertise when first computerizing. Because small businesses suffer from severe financial constraints. it is often difficult to justify the cost of custom software. Hence. for many small businesses, engaging a consultant to help with identifying suitable packaged software and related hardware, is their first critical step toward computerization. This study explores the importance of proactive client involvement when engaging a consultant to assist with computer system selection in small businesses. Client involvement throughout consultant engagement is found to be integral to project success and frequently lacking due to misconceptions of small businesses regarding their role. Small businesses often overestimate the impact of consultant and vendor support in achieving successful computer system selection and implementation. For consultant engagement to be successful, the process must be viewed as being directed toward the achievement of specific organizational results where the client accepts responsibility for direction of the process.
Resumo:
In a play-within-a-play, the Mechanicals' production within William Shakespeare's A Midsummer Night's Dream, the character Snout announces his transformation to play the character of Wall. Snout's portrayal of Wall is both comical and menacing as he represents the forces that separate the lovers Pyramus and Thisbe. Wall becomes a subject in a manner no different from the lovers that he separates; his influence on their situation is brought to life. The unbecoming nature of walls to demarcate, separate, intimidate, influence and control is a relationship most can relate to in their experiences with architecture. It is in these moments that architecture leaps from the sphere of object into the realm of subject; where we might be involved in some intense struggle with the placement of a wall, the wall that might separate us from a lover, justice, freedom, power or privacy. This study investigates how this struggle is portrayed through the human body as representation of walls in performance.
Resumo:
A largely overlooked aspect of creative design practices is how physical space in design studios plays a role in supporting designers' everyday work. In particular, studio surfaces such as designers' desks, office walls, notice boards, clipboards and drawing boards are full of informative, inspirational and creative artefacts such as, sketches, drawings, posters, story-boards and Post-it notes. Studio surfaces are not just the carriers of information but importantly they are sites of methodic design practices, i.e. they indicate, to an extent, how design is being carried out. This article describes the results of an ethnographic study on the use of workplace surfaces in design studios, from two academic design departments. Using the field study results, the article introduces an idea of ‘artful surfaces’. Artful surfaces emphasise how artfully designers integrate these surfaces into their everyday work and how the organisation of these surfaces comes about helping designers in accomplishing their creative and innovative design practices. Using examples from the field study, the article shows that artful surfaces have both functional and inspirational characteristics. From the field study, three types of artful surfaces are identified: personal; shared; and project-specific. The article suggests that a greater insight into how these artful surfaces are created and used could lead to better design of novel display technologies to support designers' everyday work.
Resumo:
Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing Light gauge Steel Frame (LSF) wall systems made of 1.15 mm G500 steel studs and varying plasterboard and insulation configurations (cavity and external insulation) using full scale fire tests. Suitable finite element models of LSF walls were then developed and validated by comparing with test results. In this study, the validated finite element models of LSF wall panels subject to standard fire conditions were used in a detailed parametric study to investigate the effects of important parameters such as steel grade and thickness, plasterboard screw spacing, plasterboard lateral restraint, insulation materials and load ratio on their performance under standard fire conditions. Suitable equations were proposed to predict the time–temperature profiles of LSF wall studs with eight different plasterboard-insulation configurations, and used in the finite element analyses. Finite element parametric studies produced extensive fire performance data for the LSF wall panels in the form of load ratio versus time and critical hot flange (failure) temperature curves for eight wall configurations. This data demonstrated the superior fire performance of externally insulated LSF wall panels made of different steel grades and thicknesses. It also led to the development of a set of equations to predict the important relationship between the load ratio and the critical hot flange temperature of LSF wall studs. Finally this paper proposes a simplified method to predict the fire resistance rating of LSF walls based on the two proposed set of equations for the load ratio–hot flange temperature and the time–temperature relationships.
Resumo:
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.