370 resultados para Object recognition test
Resumo:
For several reasons, the Fourier phase domain is less favored than the magnitude domain in signal processing and modeling of speech. To correctly analyze the phase, several factors must be considered and compensated, including the effect of the step size, windowing function and other processing parameters. Building on a review of these factors, this paper investigates a spectral representation based on the Instantaneous Frequency Deviation, but in which the step size between processing frames is used in calculating phase changes, rather than the traditional single sample interval. Reflecting these longer intervals, the term delta-phase spectrum is used to distinguish this from instantaneous derivatives. Experiments show that mel-frequency cepstral coefficients features derived from the delta-phase spectrum (termed Mel-Frequency delta-phase features) can produce broadly similar performance to equivalent magnitude domain features for both voice activity detection and speaker recognition tasks. Further, it is shown that the fusion of the magnitude and phase representations yields performance benefits over either in isolation.
Resumo:
Increasingly, large amounts of public and private money are being invested in education and as a result, schools are becoming more accountable to stakeholders for this financial input. In terms of the curriculum, governments worldwide are frequently tying school funding to students‟ and schools‟ academic performances, which are monitored through high-stakes testing programs. To accommodate the resultant pressures from these testing initiatives, many principals are re-focussing their school‟s curriculum on the testing requirements. Such a re-focussing, which was examined critically in this thesis, constituted an externally facilitated rapid approach to curriculum change. In line with previously enacted change theories and recommendations from these, curriculum change in schools has tended to be a fairly slow, considered, collaborative process that is facilitated internally by a deputy-principal (curriculum). However, theoretically based research has shown that such a process has often proved to be difficult and very rarely successful. The present study reports and theorises the experiences of an externally facilitated process that emerged from a practitioner model of change. This case study of the development of the controlled rapid approach to curriculum change began by establishing the reasons three principals initiated curriculum change and why they then engaged an outsider to facilitate the process. It also examined this particular change process from the perspectives of the research participants. The investigation led to the revision of the practitioner model as used in the three schools and challenged the current thinking about the process of school curriculum change. The thesis aims to offer principals and the wider education community an alternative model for consideration when undertaking curriculum change. Finally, the thesis warns that, in the longer term, the application of study‟s revised model (the Controlled Rapid Approach to Curriculum Change [CRACC] Model) may have less then desirable educational consequences.
Resumo:
We consider the problem of object tracking in a wireless multimedia sensor network (we mainly focus on the camera component in this work). The vast majority of current object tracking techniques, either centralised or distributed, assume unlimited energy, meaning these techniques don't translate well when applied within the constraints of low-power distributed systems. In this paper we develop and analyse a highly-scalable, distributed strategy to object tracking in wireless camera networks with limited resources. In the proposed system, cameras transmit descriptions of objects to a subset of neighbours, determined using a predictive forwarding strategy. The received descriptions are then matched at the next camera on the objects path using a probability maximisation process with locally generated descriptions. We show, via simulation, that our predictive forwarding and probabilistic matching strategy can significantly reduce the number of object-misses, ID-switches and ID-losses; it can also reduce the number of required transmissions over a simple broadcast scenario by up to 67%. We show that our system performs well under realistic assumptions about matching objects appearance using colour.
Resumo:
Burnout has been identified as a significant factor in HIV/AIDS volunteering. It has been associated with depression, anxiety and the loss of volunteers from the health care delivery system. The aim of this study was to test the independence of the health and motivational processes hypothesized within the Job Demands – Resources model of burnout in HIV/AIDS volunteers. Participants were 307 HIV/AIDS volunteers from state AIDS Councils throughout Australia who completed self-report measures pertaining to role ambiguity and role conflict, social support, burnout, intrinsic and organizational satisfaction, and depression. Findings suggested that the independence of the dual processes hypothesized by the model was only partially supported. These findings provide a model for burnout which gives a framework for interventions at both the individual and organizational level which would contribute to the prevention of burnout, depression, and job dissatisfaction in HIV/AIDS volunteers.
Resumo:
This paper presents a robust place recognition algorithm for mobile robots. The framework proposed combines nonlinear dimensionality reduction, nonlinear regression under noise, and variational Bayesian learning to create consistent probabilistic representations of places from images. These generative models are learnt from a few images and used for multi-class place recognition where classification is computed from a set of feature-vectors. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions and blurring. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.
Resumo:
Two archaeal Holliday junction resolving enzymes, Holliday junction cleavage (Hjc) and Holliday junction endonuclease (Hje), have been characterized. Both are members of a nuclease superfamily that includes the type II restriction enzymes, although their DNA cleaving activity is highly specific for four-way junction structure and not nucleic acid sequence. Despite 28% sequence identity, Hje and Hjc cleave junctions with distinct cutting patterns—they cut different strands of a four-way junction, at different distances from the junction centre. We report the high-resolution crystal structure of Hje from Sulfolobus solfataricus. The structure provides a basis to explain the differences in substrate specificity of Hje and Hjc, which result from changes in dimer organization, and suggests a viral origin for the Hje gene. Structural and biochemical data support the modelling of an Hje:DNA junction complex, highlighting a flexible loop that interacts intimately with the junction centre. A highly conserved serine residue on this loop is shown to be essential for the enzyme's activity, suggesting a novel variation of the nuclease active site. The loop may act as a conformational switch, ensuring that the active site is completed only on binding a four-way junction, thus explaining the exquisite specificity of these enzymes.
Resumo:
Research methodology in the discipline of Art & Design has been a topic for much debate in the academic community. The result of such avid and ongoing discussion appears to be a disciplinary obsession with research methodologies and a culture of adopting and adapting existing methodologies from more established disciplines. This has eventuated as a means of coping with academic criticism and as an attempt to elevate Art & Design to a ‘real academic status’. Whilst this adoption has had some effect in tempering the opinion of Art & Design research from more ‘serious’ academics the practice may be concealing a deeper problem for this discipline. Namely, that knowledge transfer within creative practice, particularly in fashion textiles design practice, is largely tacit in nature and not best suited to dissemination through traditional means of academic writing and publication. ----- ----- There is an opportunity to shift the academic debate away from appropriate (or inappropriate) use of methodologies and theories to demonstrate the existence (or absence) of rigor in creative practice research. In particular, the changing paradigms for the definitions of research to support new models for research quality assessment (such as the RAE in the United Kingdom and ERA in Australia) require a re-examination of the traditions of academic writing and publication in relation to this form of research. It is now appropriate to test the limits of tacit knowledge. It has been almost half a century since Michael Polanyi wrote “we know more than we can tell” (Polanyi, 1967 p.4) at a time when the only means of ‘telling’ was through academic writing and publishing in hardcopy format. ----- ----- This paper examines the academic debate surrounding research methodologies for fashion textiles design through auto-ethnographic case study and object analysis. The author argues that, while this debate is interesting, the focus should be to ask: are there more effective ways for creative practitioner researchers to disseminate their research? The aim of this research is to examine the possibilities of developing different, more effective methods of ‘telling’ to support the transfer of tacit knowledge inherent in the discipline of Fashion Textiles Design.
Resumo:
Segmentation of novel or dynamic objects in a scene, often referred to as background sub- traction or foreground segmentation, is critical for robust high level computer vision applica- tions such as object tracking, object classifca- tion and recognition. However, automatic real- time segmentation for robotics still poses chal- lenges including global illumination changes, shadows, inter-re ections, colour similarity of foreground to background, and cluttered back- grounds. This paper introduces depth cues provided by structure from motion (SFM) for interactive segmentation to alleviate some of these challenges. In this paper, two prevailing interactive segmentation algorithms are com- pared; Lazysnapping [Li et al., 2004] and Grab- cut [Rother et al., 2004], both based on graph- cut optimisation [Boykov and Jolly, 2001]. The algorithms are extended to include depth cues rather than colour only as in the original pa- pers. Results show interactive segmentation based on colour and depth cues enhances the performance of segmentation with a lower er- ror with respect to ground truth.
Resumo:
Occlusion is a big challenge for facial expression recognition (FER) in real-world situations. Previous FER efforts to address occlusion suffer from loss of appearance features and are largely limited to a few occlusion types and single testing strategy. This paper presents a robust approach for FER in occluded images and addresses these issues. A set of Gabor based templates is extracted from images in the gallery using a Monte Carlo algorithm. These templates are converted into distance features using template matching. The resulting feature vectors are robust to occlusion. Occluded eyes and mouth regions and randomly places occlusion patches are used for testing. Two testing strategies analyze the effects of these occlusions on the overall recognition performance as well as each facial expression. Experimental results on the Cohn-Kanade database confirm the high robustness of our approach and provide useful insights about the effects of occlusion on FER. Performance is also compared with previous approaches.
Resumo:
Misperception of speed under low-contrast conditions has been identified as a possible contributor to motor vehicle crashes in fog. To test this hypothesis, we investigated the effects of reduced contrast on drivers’ perception and control of speed while driving under real-world conditions. Fourteen participants drove around a 2.85 km closed road course under three visual conditions: clear view and with two levels of reduced contrast created by diffusing filters on the windscreen and side windows. Three dependent measures were obtained, without view of the speedometer, on separate laps around the road course: verbal estimates of speed; adjustment of speed to instructed levels (25 to 70 km h-1); and estimation of minimum stopping distance. The results showed that drivers traveled more slowly under low-contrast conditions. Reduced contrast had little or no effect on either verbal judgments of speed or estimates of minimum stopping distance. Speed adjustments were significantly slower under low-contrast than clear conditions, indicating that, contrary to studies of object motion, drivers perceived themselves to be traveling faster under conditions of reduced contrast. Under real-world driving conditions, drivers’ ability to perceive and control their speed was not adversely affected by large variations in the contrast of their surroundings. These findings suggest that perceptions of self-motion and object motion involve neural processes that are differentially affected by variations in stimulus contrast as encountered in fog.
Resumo:
With the emergence of multi-core processors into the mainstream, parallel programming is no longer the specialized domain it once was. There is a growing need for systems to allow programmers to more easily reason about data dependencies and inherent parallelism in general purpose programs. Many of these programs are written in popular imperative programming languages like Java and C]. In this thesis I present a system for reasoning about side-effects of evaluation in an abstract and composable manner that is suitable for use by both programmers and automated tools such as compilers. The goal of developing such a system is to both facilitate the automatic exploitation of the inherent parallelism present in imperative programs and to allow programmers to reason about dependencies which may be limiting the parallelism available for exploitation in their applications. Previous work on languages and type systems for parallel computing has tended to focus on providing the programmer with tools to facilitate the manual parallelization of programs; programmers must decide when and where it is safe to employ parallelism without the assistance of the compiler or other automated tools. None of the existing systems combine abstraction and composition with parallelization and correctness checking to produce a framework which helps both programmers and automated tools to reason about inherent parallelism. In this work I present a system for abstractly reasoning about side-effects and data dependencies in modern, imperative, object-oriented languages using a type and effect system based on ideas from Ownership Types. I have developed sufficient conditions for the safe, automated detection and exploitation of a number task, data and loop parallelism patterns in terms of ownership relationships. To validate my work, I have applied my ideas to the C] version 3.0 language to produce a language extension called Zal. I have implemented a compiler for the Zal language as an extension of the GPC] research compiler as a proof of concept of my system. I have used it to parallelize a number of real-world applications to demonstrate the feasibility of my proposed approach. In addition to this empirical validation, I present an argument for the correctness of the type system and language semantics I have proposed as well as sketches of proofs for the correctness of the sufficient conditions for parallelization proposed.
Robust mean super-resolution for less cooperative NIR iris recognition at a distance and on the move
Resumo:
Less cooperative iris identification systems at a distance and on the move often suffers from poor resolution. The lack of pixel resolution significantly degrades the iris recognition performance. Super-resolution has been considered to enhance resolution of iris images. This paper proposes a pixelwise super-resolution technique to reconstruct a high resolution iris image from a video sequence of an eye. A novel fusion approach is proposed to incorporate information details from multiple frames using robust mean. Experiments on the MBGC NIR portal database show the validity of the proposed approach in comparison with other resolution enhancement techniques.
Resumo:
IEC 61850 Process Bus technology has the potential to improve cost, performance and reliability of substation design. Substantial costs associated with copper wiring (designing, documentation, construction, commissioning and troubleshooting) can be reduced with the application of digital Process Bus technology, especially those based upon international standards. An IEC 61850-9-2 based sampled value Process Bus is an enabling technology for the application of Non-Conventional Instrument Transformers (NCIT). Retaining the output of the NCIT in its native digital form, rather than conversion to an analogue output, allows for improved transient performance, dynamic range, safety, reliability and reduced cost. In this paper we report on a pilot installation using NCITs communicating across a switched Ethernet network using the UCAIug Implementation Guideline for IEC 61850-9-2 (9-2 Light Edition or 9-2LE). This system was commissioned in a 275 kV Line Reactor bay at Powerlink Queensland’s Braemar substation in 2009, with sampled value protection IEDs 'shadowing' the existing protection system. The results of commissioning tests and twelve months of service experience using a Fibre Optic Current Transformer (FOCT) from Smart Digital Optics (SDO) are presented, including the response of the system to fault conditions. A number of remaining issues to be resolved to enable wide-scale deployment of NCITs and IEC 61850-9-2 Process Bus technology are also discussed.
Resumo:
This paper proposes a semi-supervised intelligent visual surveillance system to exploit the information from multi-camera networks for the monitoring of people and vehicles. Modules are proposed to perform critical surveillance tasks including: the management and calibration of cameras within a multi-camera network; tracking of objects across multiple views; recognition of people utilising biometrics and in particular soft-biometrics; the monitoring of crowds; and activity recognition. Recent advances in these computer vision modules and capability gaps in surveillance technology are also highlighted.