231 resultados para Masonry bridges.
Resumo:
Problem solving is an essential element of civil engineering education. It has been I observed that students are best able to understand civil engineering theory when there is a ' practical application of it. Teaching theory alone has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure and "drop-out". This paper analyses the effectiveness of introducing practical design projects at an early stage within a civil engineering undergraduate program at Queensland University of Technology. In two of the essential basic subjects, Engineering Mechanics and Steel Structures, model projects which simulate realistic engineering exercises were introduced. Students were required to work in small groups to analyse, design and build the lightest I most efficient model bridges made of specific materials such as spaghetti, drinking straw, paddle pop sticks and balsa wood and steel columns for a given design loading/target capacity. The paper traces the success of the teaching strategy at each stage from its introduction through to the final student and staff evaluation.
Resumo:
Problem solving is an essential element of civil engineering education. It has been observed that students are best able to understand civil engineering theory when there is a practical application of it. Teaching theory alone has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure and “drop-out”. This paper analyses the effectiveness of introducing practical design projects at an early stage within a civil engineering undergraduate program at Queensland University of Technology. In two of the essential basic subjects, Engineering Mechanics and Steel Structures, model projects which simulate realistic engineering exercises were introduced. Students were required to work in small groups to analyse, design and build the lightest / most efficient model bridges made of specific materials such as spaghetti, drinking straw, paddle pop sticks and balsa wood and steel columns for a given design loading/target capacity. The paper traces the success of the teaching strategy at each stage from its introduction through to the final student and staff evaluation.
Resumo:
This thesis developed a condition assessment and rating method to identify those bridges in a network which are in most need of repair for an effective life cycle management. The method estimates the contribution of critical factors towards bridge deterioration and uses structural analysis to overcome the subjectivity of traditional current condition assessment methods. This research was a part of the CRC project titled 'Life Cycle Management of Railway Bridges'. Efficient usage of resources and enhancing the safety and serviceability of railway bridges are the significant outcomes of using the proposed method.
Resumo:
Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.
Resumo:
The structures of the ammonium salts of phenoxyacetic acid, NH4+ C8H6O3- (I), (4-fluorophenoxy)acetic acid NH4+ C8H5FO3- (II) and the herbicidally active (4-chloro-2-methylphenoxy)acetic acid (MCPA), NH4+ C9H8ClO3-. 0.5(H2O) (III) have been determined. All have two-dimensional layered structures based on inter-species ammonium N-H...O hydrogen-bonding associations which give core substructures consisting primarily of conjoined cyclic motifs. Crystals of (I) and (II) are isomorphous with the core comprising R2/1(5), R2/1(4) and centrosymmetric R2/4(8) ring motifs, giving two-dimensional layers lying parallel to (100). In (III), the water molecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O-atoms in an R4/4(12) hydrogen-bonded motif, creating two R3/4(10) rings which together with a conjoined centrosymmetric R2/4(8) ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100). No pi-pi ring associations are present in any of the structures.
Resumo:
Many researchers in the field of civil structural health monitoring (SHM) have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Fieldwork has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. Informed by a brief review of the literature, this paper documents the design and proposed test plan of a structurally complex laboratory bridge model that has been specifically designed for the purpose of SHM research. Preliminary results have been presented in the companion paper.
Resumo:
Many researchers in the field of civil structural health monitoring have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Field work has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. This paper presents some preliminary results of experimental modal testing and analysis of the bridge model presented in the companion paper, using the peak picking method, and compares these results with those of a simple numerical model of the structure. Three dominant modes of vibration were experimentally identified under 15 Hz. The mode shapes and order of the modes matched those of the numerical model; however, the frequencies did not match.
Resumo:
The structures of the isomorphous potassium and rubidium polymeric coordination complexes with 4-nitrobenzoic acid, poly[mu2-aqua-aqua-mu3-(4-nitrobenzoato)-potassium], [K(C7H4N2O2)(H2O)2]n, (I) and poly[mu3-aqua-aqua-mu5-(4-nitrobenzoato)-rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II) have been determined. In (I) the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O-atom donors, a single bridging carboxyl O-atom donor and two water molecules, one of which is bridging. In the the Rb complex (II), the same basic MO6 coordination is found in the repeat unit but is expanded to RbO9 through a slight increase in the accepted Rb-O bond length range and includes an additional Rb-O(carboxyl) bond, completing a bidentate O,O'-chelate interaction, and additional bridging Rb-Onitro) and Rb-O(water) bonds. The comparative K-O and Rb-O bond length ranges are 2.738(3)-3.002(3)Ang. (I) and 2.884(2)-3.182(2)Ang. (II). The structure of (II) is also isomorphous as well as isostructural with the known structure of the nine-coordinate caesium 4-nitrobenzoate analogue, [Cs(C7H4N2O~2~)(H~2~O)2]n, (III) in which the Cs---O range is 3.047(4)-3.338(4)Ang. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging interactions through both water and nitro groups as well as extensions along c through the p-related carboxyl group, giving a two-dimensional structure in (I). In (II) and (III), three-dimensional structures are generated through additional bridges through the nitro and water O-atoms. In all structures, both water molecules are involved in similar intra-polymer O-H...O hydrogen-bonding interactions to both carboxyl as well as water O-atom acceptors. A comparison of the varied coordination behaviour of the full set of Li-Cs salts with 4-nitrobenzoic acid is also made.
Resumo:
During acute and strenuous exercise, the enhanced formation of reactive oxygen species can induce damage to lipids, proteins, and nucleic acids. The aim of this study was to investigate the effect of an Ironman triathlon (3.8 km swim, 180 km cycle, 42 km run), as a prototype of ultra-endurance exercise, on DNA stability. As biomarkers of genomic instability, the number of micronuclei, nucleoplasmic bridges, and nuclear buds were measured within the cytokinesis-block micronucleus cytome assay in once-divided peripheral lymphocytes of 20 male triathletes. Blood samples were taken 2 days before, within 20 min after the race, and 5 and 19 days post-race. Overall, the number of micronuclei decreased (P < 0.05) after the race, remained at a low level until 5 days post-race, and declined further to 19 days post-race (P < 0.01). The frequency of nucleoplasmic bridges and nuclear buds did not change immediately after the triathlon. The number of nucleoplasmic bridge declined from 2 days pre-race to 19 days post-exercise (P < 0.05). The frequency of nuclear buds increased after the triathlon, peaking 5 days post-race (P < 0.01) and decreased to basic levels 19 days after the race (P < 0.01). The results suggest that an Ironman triathlon does not cause long-lasting DNA damage in well-trained athletes.
Resumo:
Digital transformations are not contained within the digital domain but are increasingly spilling over into the physical world. In this chapter, we analyse some of the transformations undergoing in cities today towards becoming smart cities. We offer a critique of smart cities and a way forward, divided into three parts: First, we explore the concept of Smart Citizens in terms of both localities, the move towards a hyperlocal network and also the citizen’s role in the creation and use of data. We use the ‘Smart London’ plan drawn up by the Mayor of London, as a way to illustrate our discussion. Second, we turn to the civic innovations enabled by digital transformations and their potential impact on citizens and citizenship. Specifically, we are interested in the notion of social capital as an alternative form of in-kind currency and its function as an indicator of value, in order to ask, can digital transformations give rise to ‘civic capital,’ and how can such a concept help, for instance, a local government invite more representative residents and community champions to participate in community engagement for better urban planning. Third, we introduce a hybrid, location-based game under development by design agency Preliminal Games in London, UK. This illustrative case critiques and highlights the current challenges to establishing a new economic model that bridges the digital / physical divide. The game provides a vehicle for us to explore how established principles and strategies in game design such as immersive storytelling and goal setting, can be employed to encourage players to think of the interconnections of their hybrid digital / physical environments in new ways.
Resumo:
Modal flexibility is a widely accepted technique to detect structural damage using vibration characteristics. Its application to detect damage in long span large diameter cables such as those used in suspension bridge main cables has not received much attention. This paper uses the modal flexibility method incorporating two damage indices (DIs) based on lateral and vertical modes to localize damage in such cables. The competency of those DIs in damage detection is tested by the numerically obtained vibration characteristics of a suspended cable in both intact and damaged states. Three single damage cases and one multiple damage case are considered. The impact of random measurement noise in the modal data on the damage localization capability of these two DIs is next examined. Long span large diameter cables are characterized by the two critical cable parameters named bending stiffness and sag-extensibility. The influence of these parameters in the damage localization capability of the two DIs is evaluated by a parametric study with two single damage cases. Results confirm that the damage index based on lateral vibration modes has the ability to successfully detect and locate damage in suspended cables with 5% noise in modal data for a range of cable parameters. This simple approach therefore can be extended for timely damage detection in cables of suspension bridges and thereby enhance their service during their life spans.
Resumo:
In the structure of the title complex [[Na(H2O)3]+ (C6H2Cl3N2O2)-^ . 3(H2O)]n, the Na salt of the herbicide picloram, the cation is a polymeric chain structure, based on doubly water-bridged NaO5 trigonal bipyramidal complex units which have in addition, a singly-bonded monodentate water molecule. Each of the bridges within the chain which lies along the a cell direction is centrosymmetric with Na...Na separations of 3.4807(16) and 3.5109(16)Ang. In the crystal, there are three water molecules of solvation and these, as well as the coordinated water molecules and the amino group of the 4-amino-3,5,6-trichloropicolinate anion are involved in extensive inter-species hydrogen-bonding interactions with carboxyl and water O-atoms as well as the pyridine N-atom. Among these association is a centrosymmetric cyclic tetra-water R4/4(8) ring , resulting in an overall three-dimensional structure.
Resumo:
Interleukin-10 (IL-10) is an important immunoregulatory cytokine produced by various types of cells. Researchers describe here the isolation and characterization of olive flounder IL-10 (ofIL-10) cDNA and genomic organization. The ofIL-10 gene encodes a 187 amino acid protein and is composed of a five exon/four intron structure, similar to other known IL-10 genes. The ofIL-10 promoter sequence analysis shows a high level of homology in putative binding sites for transcription factors which are sufficient for transcriptional regulation ofIL-10. Important structural residues are maintained in the ofIL-10 protein including the four cysteines responsible for the two intra-chain disulfide bridges reported for human IL-10 and two extra cysteine residues that exist only in fish species. The phylogenetic analysis clustered ofIL-10 with other fish IL-10s and apart from mammalian IL-10 molecules. Quantitative real-time Polymerase Chain Reaction (PCR) analysis demonstrated ubiquitous ofIL-10 gene expression in the 13 tissues examined. Additionally, the induction of ofIL-10 gene expression was observed in the kidney tissue from olive flounder infected with bacteria (Edawardsiella tarda) or virus (Viral Hemorrhagic Septicemia Virus; VHSV). These data indicate that IL-10 is an important immune regulator that is conserved strictly genomic organization and function during the evolution of vertebrate immunity.
Resumo:
Climbing Mountains, Building Bridges is a rich theme for exploring some of the “challenges, obstacles, links, and connections” facing mathematics education within the current STEM climate (Science, Technology, Engineering and Mathematics). This paper first considers some of the issues and debates surrounding the nature of STEM education, including perspectives on its interdisciplinary nature. It is next argued that mathematics is in danger of being overshadowed, in particular by science, in the global urgency to advance STEM competencies in schools and the workforce. Some suggestions are offered for lifting the profile of mathematics education within an integrated STEM context, with examples drawn from modelling with data in the sixth grade.