464 resultados para Low porosity
Resumo:
Purpose: To examine the relationship between hip abductor muscle (HABD) strength and the magnitude of pelvic drop (MPD) for patients with non-specific low back pain (NSLBP) and controls (CON) prior to and following a 3-week HABD strengthening protocol. At baseline, we hypothesized that NSLBP patients would exhibit reduced HABD strength and greater MPD compared to CON. Following the protocol, we hypothesized that strength would increase and MPD would decrease. Relevance: The Trendelenburg test (TT) is a common clinical test used to examine the ability of the HABD to maintain horizontal pelvic position during single limb stance. However, no study has specifically tested this theory. Moreover, no study has investigated the relationship between HABD strength and pelvic motion during walking or tested whether increased HABD strength would reduce the MPD. Methods: Quasi-experimental with 3-week exercise intervention. Fifteen NSLBP patients (32.5yrs,range 21-51yrs; VAS baseline: 5.3cm) and 10 CON (29.5yrs,range 22-47yrs) were recruited. Isometric HABD strength was measured using a force dynamometer and the average of three maximal voluntary contractions were normalized to body mass (N/kg). Two-dimensional MPD (degrees) was measured using a 60 Hz camera and was derived from two retroreflective-markers placed on the posterior superior iliac spines. MPD was measured while performing the static TT and while walking and averaged over 10 consecutive footfalls. NSLBP patients completed a 3-week HABD strengthening protocol consisting of 2 open-kinetic-chain exercises then all measures were repeated. Non-parametric analysis was used for group comparisons and correlation analysis. Results: At baseline, the NSLBP patients demonstrated 31% reduced HABD strength (mean=6.6 N/kg) compared to CON (mean=9.5 N/kg: p=0.03) and no significant differences in maximal pelvic frontal plane excursion while walking (NSLBP:mean=8.1°, CON:mean=7.1°: p=0.72). No significant correlations were measured between left HABD strength and right MPD (r=-0.37, p=0.11), or between right HABD strength and left MPD (r=-0.04, p=0.84) while performing the static TT. Following the 3-week strengthening protocol, NSLBP patients demonstrated a 12% improvement in strength (Post:mean=7.4 N/kg: p=0.02), a reduction in pain (VAS followup: 2.8cm), but no significant decreases in MPD while walking (p=0.92). Conclusions: NSLBP patients demonstrated reduced HABD strength at baseline and were able to increase strength and reduce pain in a 3-week period. However, despite increases in HABD strength, the NSLBP group exhibited similar MPD motion during the static TT and while walking compared to baseline and controls. Implications: The results suggest that the HABD alone may not be primarily responsible for controlling a horizontal pelvic position during static and dynamic conditions. Increasing the strength of the hip abductors resulted in a reduction of pain in NSLBP patients providing evidence for further research to identify specific musculature responsible for controlling pelvic motion.
Resumo:
Ancient sandstones include important reservoirs for hydrocarbons (oil and gas), but, in many cases, their ability to serve as reservoirs is heavily constrained by the effects of carbonate cements on porosity and permeability. This study investigated the controls on distribution and abundance of carbonate cements within the Jurassic Plover Formation, Browse Basin, North West Shelf, Australia. Samples were analysed petrographically with point counting of 59 thin sections and mineralogically with x-ray diffraction from two wells within the Torosa Gas Field. Selected samples were also analysed for stable isotopes of O and C. Sandstones are classified into eleven groups. Most abundant are quartzarenites and then calcareous quartzarenites. Lithology ranged between sandstones consisting of mostly quartz with scant or no carbonate in the form of cement or allochems, to sandstones with as much as 40% carbonate. The major sources of carbonate cement in Torosa 1 and Torosa 4 sandstones were found to be early, shallow marine diagenetic processes (including cementation), followed by calcite cementation and recrystallisation of cements and allochems during redistribution by meteoric waters. Blocky and sparry calcite cements, indicative of meteoric environments on the basis of stable isotope values and palaeotemperature assessment, overprinted the initial shallow marine cement phase in all cases and meteoric cements are dominant. Torosa 4 was influenced more by marine settings than Torosa 1, and thus has the greater potential for calcite cement. The relatively low compaction of calcite-cemented sandstones and the stable isotope data suggest deep burial cementation was not a major factor. Insufficient volcanic rock fragments or authigenic clay content infers alteration of feldspars was not a major source of calcite. Very little feldspar is present, altered or otherwise. Hence, increased alkalinity from feldspar dissolution is not a contributing factor in cement formation. Increased alkalinity from bacterial sulphate reduction in organic–rich fine sediments may have driven limited cementation in some samples. The main definable and significant source of diagenetic marine calcite cement originated from original marine cements and the nearby dissolution of biogenic sources (allochems) at relatively shallow depths. Later diagenetic fluids emplaced minor dolomite, but this cement did not greatly affect the reservoir quality in the samples studied.
Resumo:
This paper presents an experimental study to evaluate the influence of coarse lightweight aggregate (LWA), fine LWA and the quality of the paste matrix on water absorption and permeability, and resistance to chloride-ion penetration in concrete. The results indicate that incorporation of pre-soaked coarse LWA in concrete increases water sorptivity and permeability slightly compared to normal weight concrete (NWC) of similar water-to-cementitious materials ratio (w/cm). Furthermore, resistance of the sand lightweight concrete (LWC) to water permeability and chloride-ion penetration decreases with an increase in porosity of the coarse LWA. The use of fine LWA including a crushed fraction <1.18 mm reduced resistance of the all-LWC to water and chloride-ion penetration compared with the sand-LWC which has the same coarse LWA. Overall, the quality of the paste matrix was dominant in controlling the transport properties of the concrete, regardless of porosity of the aggregates used. With low w/cm and silica fume, low unit weight LWC (_1300 kg/m3) was produced with a higher resistance to water and chloride-ion penetration compared with NWC and LWC of higher unit weights.
Resumo:
To ensure better concrete quality and long-term durability, there has been an increasing focus in recent years on the development of test methods for quality control of concrete. This paper presents a study to evaluate the effect of water accessible porosity and oven-dry unit weight on the resistance of concrete to chloride-ion penetration. Based on the experimental results and regression analyses, empirical relationships of the charge passed (ASTM C 1202) and chloride migration coefficient (NT Build 492) versus the water accessible porosity and oven dry unit weight of the concrete are established. Using basic physical properties of water accessible porosity and oven dry unit weight which can be easily determined, total charge passed and migration coefficient of the concrete can be estimated for quality control and for estimating durability of concrete.
Resumo:
This paper presents an experimental study to evaluate the effect of coarse and fine LWA in concrete on its water absorption and permeability, and resistance to chloride-ion penetration. In additions, LWC with lower unit weight of about 1300 kg/m3 but high resistance to water and chloride-ion penetration was developed and evaluated. The results indicate that the incorporation of coarse LWA in concrete increases water sorptivity and permeability slightly compared to NWC of similar w/c. The resistance of the sand-LWC to chloride-ion penetration depends on porosity of the coarse LWA. Fine LWA has more influence on the transport proper-ties of concrete than coarse LWA. Use of lightweight crushed sand <1.18 mm reduced the resistance of the LWC to water and chloride-ion penetration to some extent. With low w/cm and silica fume, low unit weight LWC (~1300 kg/m3) was produced with higher resistance to water and chloride ion penetration compared with concretes of higher unit weights.
Resumo:
The multilamellar structure of phospholipids, i.e. the surface amorphous layer (SAL) that covers the natural surface of articular cartilage, and hexagonal boron nitride (h-BN) on the surface of metal porous bearings are two prominent examples of the family of layered materials that possess the ability to deliver lamellar lubrication. This chapter presents the friction study that was conducted on the surfaces of cartilage and the metal porous bearing impregnated with oil (first generation) and with oil + h-BN (second generation). The porosity of cartilage is around 75% and those of metal porous bearings were 15–28 wt%. It is concluded that porosity is a critical factor in facilitating the excellent tribological properties of both articular cartilage and the porous metal bearings studied.
Resumo:
This research is part of a major project with a stimulus that rose from the need to manage a large number of ageing bridges in low traffic volume roads (LTVR) in Australia. The project investigated, designed and consequently constructed, involved replacing an ageing super-structure of a 10m span bridge with a disused Flat-bed Rail Wagon (FRW). This research, therefore, is developed on the premises that the FRW can be adopted as the main structural system for the bridges in LTVR network. The main focus of this research is to present two alternate deck wearing systems (DWS) as part of the design of the FRW as road bridge deck conforming to AS5100 (2004). The bare FRW structural components were first examined for their adequacy (ultimate and serviceability) in resisting the critical loads specified in AS5100(2004). Two options of DWSs were evaluated and their effects on the FRW examined. The first option involved usage of timber DWS; the idea of this option was to use all the primary and secondary members of the FRW in load sharing and to provide additional members where weaknesses in the original members arose. The second option involved usage of reinforced concrete DWS with only the primary members of the FRW sharing the AS5100 (2004) loading. This option inherently minimised the risk associated with any uncertainty of the secondary members to their structural adequacy. This thesis reports the design phases of both options with conclusions of the selection of the ideal option for better structural performance, ease of construction and cost. The comparison carried out here focuses on the distribution of the traffic load by the FRW as a superstructure. Advantages and disadvantages highlighting cost comparisons and ease of constructability of the two systems are also included.
Resumo:
The surface formation energies of four low-indexed surfaces, including (001), (100), (110) and (011), of tin dioxide (SnO2) terminated by nonmetals (H, N, O, F, Cl, Br, and I) have been studied with the frameworks of density functional theory. A strong dependence of relative surface stabilities on surface atoms has been presented based on the calculations. Several instructions, in particular the selection of specific precursors and morphology controlling agents, have been further illustrated as a guideline for experimentalists.
Resumo:
The low index Magnesium hydride surfaces, MgH2(0 0 1) and MgH2(1 1 0), have been studied by ab intio Density Functional Theory (DFT) calculations. It was found that the MgH2(1 1 0) surface is more stable than MgH2(0 0 1) surface, which is in good agreement with the experimental observation. The H2 desorption barriers vary depending on the crystalline surfaces that are exposed and also the specific H atom sites involved – they are found to be generally high, due to the thermodynamic stability of the MgH2 system, and are larger for the MgH2(0 0 1) surface. The pathway for recombinative desorption of one in-plane and one bridging H atom from the MgH2(1 1 0) surface was found to be the lowest energy barrier amongst those computed (172 KJ/mol) and is in good agreement with the experimental estimates.
Resumo:
The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon [1987] developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer [1988] provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer [1988] noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) IDPS, sample numbers W701OA2 and W7029CI, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.
Resumo:
In this paper we use the algorithm SeqSLAM to address the question, how little and what quality of visual information is needed to localize along a familiar route? We conduct a comprehensive investigation of place recognition performance on seven datasets while varying image resolution (primarily 1 to 512 pixel images), pixel bit depth, field of view, motion blur, image compression and matching sequence length. Results confirm that place recognition using single images or short image sequences is poor, but improves to match or exceed current benchmarks as the matching sequence length increases. We then present place recognition results from two experiments where low-quality imagery is directly caused by sensor limitations; in one, place recognition is achieved along an unlit mountain road by using noisy, long-exposure blurred images, and in the other, two single pixel light sensors are used to localize in an indoor environment. We also show failure modes caused by pose variance and sequence aliasing, and discuss ways in which they may be overcome. By showing how place recognition along a route is feasible even with severely degraded image sequences, we hope to provoke a re-examination of how we develop and test future localization and mapping systems.
Resumo:
Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM
Resumo:
Aims Physical activity has been shown to increase adolescent self-esteem. The aim of this investigation was to assess adolescent perceptions of parental support for physical activity endeavours, and its relationship with self-esteem among high and low SES groups. Methods Perceptions of parental support, and Rosenberg’s self-esteem (1965) were derived from the Children’s Physical Activity Correlates questionnaire, with scores ranging from 1 (lowest) to 4 (highest). Independent sample t-tests were conducted and Levene’s test indicated homogenous group variance, while Pearson’s r was employed to assess relationships between perceptions of parental support, and self-esteem. Results Overall, 111 (89%) and 64 (55%) high and low SES participants had complete data and were included in the analysis. The high SES differed for self-esteem (M = 3.39, SE = .05) from the low SES group (M = 2.75, SE = .08), t (173) = 6.82, p < .05, with a medium effect size (ES) r = .46. The high SES group scored higher for perceptions of parental support (M = 2.95, SE = .06) than the low SES group (M = 2.71, SE = .07), t (173) = 2.58, p < .05, with a low ES r = .04. Self-esteem was significantly correlated with parental support in both high (r = .34) and low (r = .47) SES groups. Conclusion Results indicate that perceptions of parental support may be a stronger indicator of self-esteem for low, than for high SES adolescents. Future physical activity strategies to promote self-esteem should involve parents as active facilitators.
Resumo:
Aims Wellness assessments can determine adolescent lifestyle behaviors. A better understanding of wellness differences between high and low SES adolescents could assist policy makers to develop improved strategies to bridge the gap between these two groups. The aim of this investigation was to explore wellness differences between high and low SES adolescents. Methods In total, 241 (125 high and 116 low SES) adolescents completed the 5-Factor Wellness Inventory (5F-Wel). The 5F-Wel comprises 97 items contributing to 17 subscales, 5 dimensions, 4 contexts, total wellness, and a life satisfaction index, with scores ranging from 0-100. Independent sample t-tests were performed with Levene’s test of equality for variances, which checked the assumption of homogeneity of variances. Results Overall, 117 (94%) and 112 (97 %) high and low SES participants had complete data and were included in the analysis. The high SES group scored higher for total wellness (M = 81.09, SE = .61) than the low SES group (M = 75.73, SE = .99). This difference was significant t (186) = 4.635, p < .05, with a medium effect size r = .32. The high SES group scored higher on 23 of 27 scales (21 scales, p < .05), while the low SES group scored higher on the remaining 3 scales (all non-significant). Conclusion These results contribute empirical data to the body of literature, indicating a large wellness discrepancy between high and low SES youth. Deficient areas can be targeted by policymakers to assist in bridging the gap between these groups.
Resumo:
The first fiber Bragg grating (FBG) accelerometer using direct transverse forces is demonstrated by fixing the FBG by its two ends and placing a transversely moving inertial object at its middle. It is very sensitive because a lightly stretched FBG is more sensitive to transverse forces than axial forces. Its resonant frequency and static sensitivity are analyzed by the classic spring-mass theory, assuming the axial force changes little. The experiments show that the theory can be modified for cases where the assumption does not hold. The resonant frequency can be modified by a linear relationship experimentally achieved, and the static sensitivity by an alternative method proposed. The principles of the over-range protection and low cross axial sensitivity are achieved by limiting the movement of the FBG and were validated experimentally. The sensitivities 1.333 and 0.634 nm/g were experimentally achieved by 5.29 and 2.83 gram inertial objects at 10 Hz from 0.1 to 0.4 g (g = 9.8 m/s 2), respectively, and their resonant frequencies were around 25 Hz. Their theoretical static sensitivities and resonant frequencies found by the modifications are 1.188 nm/g and 26.81 Hz for the 5.29 gram one and 0.784 nm/g and 29.04 Hz for the 2.83 gram one, respectively.