215 resultados para Lift Capacity
Resumo:
Assessing testamentary capacity in the terminal phase of an illness or at a person's deathbed is fraught with challenges for both doctors and lawyers. Numerous issues need to be considered when assessing capacity for a will. These issues are exacerbated when such an assessment needs to be undertaken at the bedside of a dying patient. The nature and severity of the illness, effects on cognition of the terminal illness, effects of medication, urgency, psychological and emotional factors, interactions with carers, family and lawyers, and a range of other issues confound and complicate the assessment of capacity. What is the doctor's role in properly assessing capacity in this context and how does this role intersect with the legal issues? Doctors will play an increasing role in assessing testamentary capacity in this setting. The ageing of society, more effective treatment of acute illness and, often, the prolongation of dying are only some of the factors leading to this increasing need. However, despite its importance and increasing prevalence, the literature addressing this challenging practical area is scarce and offers limited guidance. This paper examines these challenges and discusses some practical approaches.
Resumo:
Exploring high-performance anode materials is currently one of the most urgent issues towards practical sodium-ion batteries (SIBs). In this work, Bi2S3 is demonstrated to be a high-capacity anode for SIBs for the first time. The specific capacity of Bi2S3 nanorods achieves up to 658 and 264 mAh g-1 at a current density of 100 and 2000 mA g-1, respectively. A full cell with Na3V2(PO4)3-based cathode is also assembled as a proof of concept and delivers 340 mAh g-1 at 100 mA g-1. The sodium storage mechanism of Bi2S3 is investigated by ex-situ XRD coupled with high-resolution TEM (HRTEM), and it is found that sodium storage is achieved by a combined conversion-intercalation mechanism.
Resumo:
Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe2(MoO4)3 is a promising anode material for lithium battery applications. Graphical abstract The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe2(MoO4)3 still behaved high reversible capacity and good cycle performance.
Resumo:
Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells.
Resumo:
Many developing countries are experiencing rapid expansion in mining with associated water impacts. In most cases mining expansion is outpacing the building of national capacity to ensure that sustainable water management practices are implemented. Since 2011, Australia's International Mining for Development Centre (IM4DC) has funded capacity building in such countries including a program of water projects. Five projects in particular (principally covering experiences from Peru, Colombia, Ghana, Zambia, Indonesia, Philippines and Mongolia) have provided insight into water capacity building priorities and opportunities. This paper reviews the challenges faced by water stakeholders, and proposes the associated capacity needs. The paper uses the evidence derived from the IM4DC projects to develop a set of specific capacity-building recommendations. Recommendations include: the incorporation of mine water management in engineering and environmental undergraduate courses; secondments of staff to suitable partner organisations; training to allow site staff to effectively monitor water including community impacts; leadership training to support a water stewardship culture; training of officials to support implementation of catchment management approaches; and the empowerment of communities to recognise and negotiate solutions to mine-related risks. New initiatives to fund the transfer of multi-disciplinary knowledge from nations with well-developed water management practices are called for.