352 resultados para JOINT POINT REGRESSION
Resumo:
Achieving energy efficient legged locomotion is an important goal for the future of robot mobility. This paper presents a novel joint for legged locomotion that is energy efficient for two reasons. The first reason is the configuration of the elastic elements and actuator which we show analytically has lower energy losses than the typical arrangement. The second is that the joint stiffness, and hence stance duration, is controllable without requiring any energy from the actuator. Further, the joint stiffness can be changed significantly during the flight phase, from zero to highly rigid. Results obtained from a prototype hopper, demonstrate that the joint allows continuous and peak hopping via torque control. The results also demonstrate that the hopping frequency can be varied between 2.2Hz and 4.6Hz with associated stance duration of between 0.35 and 0.15 seconds.
Resumo:
This paper proposes an online learning control system that uses the strategy of Model Predictive Control (MPC) in a model based locally weighted learning framework. The new approach, named Locally Weighted Learning Model Predictive Control (LWL-MPC), is proposed as a solution to learn to control robotic systems with nonlinear and time varying dynamics. This paper demonstrates the capability of LWL-MPC to perform online learning while controlling the joint trajectories of a low cost, three degree of freedom elastic joint robot. The learning performance is investigated in both an initial learning phase, and when the system dynamics change due to a heavy object added to the tool point. The experiment on the real elastic joint robot is presented and LWL-MPC is shown to successfully learn to control the system with and without the object. The results highlight the capability of the learning control system to accommodate the lack of mechanical consistency and linearity in a low cost robot arm.
Resumo:
Timely and comprehensive scene segmentation is often a critical step for many high level mobile robotic tasks. This paper examines a projected area based neighbourhood lookup approach with the motivation towards faster unsupervised segmentation of dense 3D point clouds. The proposed algorithm exploits the projection geometry of a depth camera to find nearest neighbours which is time independent of the input data size. Points near depth discontinuations are also detected to reinforce object boundaries in the clustering process. The search method presented is evaluated using both indoor and outdoor dense depth images and demonstrates significant improvements in speed and precision compared to the commonly used Fast library for approximate nearest neighbour (FLANN) [Muja and Lowe, 2009].
Resumo:
An important aspect of robotic path planning for is ensuring that the vehicle is in the best location to collect the data necessary for the problem at hand. Given that features of interest are dynamic and move with oceanic currents, vehicle speed is an important factor in any planning exercises to ensure vehicles are at the right place at the right time. Here, we examine different Gaussian process models to find a suitable predictive kinematic model that enable the speed of an underactuated, autonomous surface vehicle to be accurately predicted given a set of input environmental parameters.
Resumo:
Point-to-point speed cameras are a relatively new and innovative technological approach to speed enforcement that is increasingly been used in a number of highly motorised countries. Previous research has provided evidence of the positive impact of this approach on vehicle speeds and crash rates, as well as additional traffic related outcomes such as vehicle emissions and traffic flow. This paper reports on the conclusions and recommendations of a large-scale project involving extensive consultation with international and domestic (Australian) stakeholders to explore the technological, operational, and legislative characteristics associated with the technology. More specifically, this paper provides a number of recommendations for better practice regarding the implementation of point-to-point speed enforcement in the Australian and New Zealand context. The broader implications of the research, as well as directions for future research, are also discussed.
Resumo:
Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.
Resumo:
Nitrous oxide (N2O) is one of the greenhouse gases that can contribute to global warming. Spatial variability of N2O can lead to large uncertainties in prediction. However, previous studies have often ignored the spatial dependency to quantify the N2O - environmental factors relationships. Few researches have examined the impacts of various spatial correlation structures (e.g. independence, distance-based and neighbourhood based) on spatial prediction of N2O emissions. This study aimed to assess the impact of three spatial correlation structures on spatial predictions and calibrate the spatial prediction using Bayesian model averaging (BMA) based on replicated, irregular point-referenced data. The data were measured in 17 chambers randomly placed across a 271 m(2) field between October 2007 and September 2008 in the southeast of Australia. We used a Bayesian geostatistical model and a Bayesian spatial conditional autoregressive (CAR) model to investigate and accommodate spatial dependency, and to estimate the effects of environmental variables on N2O emissions across the study site. We compared these with a Bayesian regression model with independent errors. The three approaches resulted in different derived maps of spatial prediction of N2O emissions. We found that incorporating spatial dependency in the model not only substantially improved predictions of N2O emission from soil, but also better quantified uncertainties of soil parameters in the study. The hybrid model structure obtained by BMA improved the accuracy of spatial prediction of N2O emissions across this study region.
Resumo:
Interlocutory judgment of the NSW Supreme Court in a medical negligence claim - circumstances under which a facilitator may be appointed to assist in the conduct of a joint expert conference - background - jurisdiction of the Court to appoint a facilitator - analysis of decision.
Resumo:
Hot spot identification (HSID) aims to identify potential sites—roadway segments, intersections, crosswalks, interchanges, ramps, etc.—with disproportionately high crash risk relative to similar sites. An inefficient HSID methodology might result in either identifying a safe site as high risk (false positive) or a high risk site as safe (false negative), and consequently lead to the misuse the available public funds, to poor investment decisions, and to inefficient risk management practice. Current HSID methods suffer from issues like underreporting of minor injury and property damage only (PDO) crashes, challenges of accounting for crash severity into the methodology, and selection of a proper safety performance function to model crash data that is often heavily skewed by a preponderance of zeros. Addressing these challenges, this paper proposes a combination of a PDO equivalency calculation and quantile regression technique to identify hot spots in a transportation network. In particular, issues related to underreporting and crash severity are tackled by incorporating equivalent PDO crashes, whilst the concerns related to the non-count nature of equivalent PDO crashes and the skewness of crash data are addressed by the non-parametric quantile regression technique. The proposed method identifies covariate effects on various quantiles of a population, rather than the population mean like most methods in practice, which more closely corresponds with how black spots are identified in practice. The proposed methodology is illustrated using rural road segment data from Korea and compared against the traditional EB method with negative binomial regression. Application of a quantile regression model on equivalent PDO crashes enables identification of a set of high-risk sites that reflect the true safety costs to the society, simultaneously reduces the influence of under-reported PDO and minor injury crashes, and overcomes the limitation of traditional NB model in dealing with preponderance of zeros problem or right skewed dataset.
Resumo:
Joint venture design teams are formed to combine resources and expertise in order to secure multi-discipline engineering design services on major projects. Bringing together resources from two ordinarily competing companies to form one joint team is however challenging as each parent company brings to the project its own organisational culture, processes and team attitudes. This study examined the factors that impact on forming a successful joint venture project team. Three critical areas were identified from an extensive literature review; Joint Venture Arrangements, Parent Companies and Forming the Team; and a survey was conducted with professionals who have worked in joint venture project teams in the Australian building industry in order to identify factors that affected successful joint venture team formation, and the common lessons learnt. This study reinforced the importance of three key criteria - trust, commitment and compatibility - for partner alignment. The results also identified four key lessons learnt which included; selecting the right resources, enabling a collaborative working environment by way of project office, implementing an independent Joint Venture Manager, and allocating work which is best for project with fees reflecting risk where risk is disproportionate.
Resumo:
Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material – hydroxyethyl methacrylate – by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).
Resumo:
Visual localization in outdoor environments is often hampered by the natural variation in appearance caused by such things as weather phenomena, diurnal fluctuations in lighting, and seasonal changes. Such changes are global across an environment and, in the case of global light changes and seasonal variation, the change in appearance occurs in a regular, cyclic manner. Visual localization could be greatly improved if it were possible to predict the appearance of a particular location at a particular time, based on the appearance of the location in the past and knowledge of the nature of appearance change over time. In this paper, we investigate whether global appearance changes in an environment can be learned sufficiently to improve visual localization performance. We use time of day as a test case, and generate transformations between morning and afternoon using sample images from a training set. We demonstrate the learned transformation can be generalized from training data and show the resulting visual localization on a test set is improved relative to raw image comparison. The improvement in localization remains when the area is revisited several weeks later.
Resumo:
Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.
Resumo:
In hyper competition, firms that are agile: sensing and responding better to customer requirements tend to be more successful and achieve supernormal profits. In spite of the widely accepted importance of customer agility, research is limited on this construct. The limited research also has predominantly focussed on the firm’s perspective of agility. However, we propose that the customers are better positioned to determine how well a firm is responding to their requirements (aka a firm’s customer agility). Taking the customers’ stand point, we address the issue of sense and respond alignment in two perspectives-matching and mediating. Based on data collected from customers in a field study, we tested hypothesis pertaining to the two methods of alignment using polynomial regression and response surface methodology. The results provide a good explanation for the role of both forms of alignment on customer satisfaction. Implication for research and practice are discussed.