348 resultados para Equation prediction
Resumo:
Background: Previous studies have shown that fundamental movement skills (FMS) and physical activity are related. Specifically, earlier studies have demonstrated that the ability to perform a variety of FMS increases the likelihood of children participating in a range of physical activities throughout their lives. To date, however, there have not been studies focused on the development of, or the relationship between, these variables through junior high school (that is, between the ages of 13 and 15). Such studies might provide important insights into the relationships between FMS and physical activity during adolescence, and suggest ways to design more effective physical education programmes for adolescents. Purpose: The main purposes of the study are: (1) to investigate the development of the students' self-reported physical activity and FMS from Grade 7 to Grade 9, (2) to analyse the associations among the students' FMS and self-reported physical activity through junior high school, (3) to analyse whether there are gender differences in research tasks one and/or two. Participants and setting: The participants in the study were 152 Finnish students, aged 13 and enrolled in Grade 7 at the commencement of the study. The sample included 66 girls and 86 boys who were drawn from three junior high schools in Middle Finland. Research design and data collection: Both the FMS tests and questionnaires pertaining to self-reported physical activity were completed annually during a 3 year period: in August (when the participants were in Grade 7), January (Grade 8), and in May (Grade 9). Data analysis: Repeated measures multivariate analysis of variances (MANOVAs) were used to analyse the interaction between gender and time (three measurement points) in FMS test sumscores and self-reported physical activity scores. The relationships between self-reported physical activity scores and fundamental movement skill sumscores through junior high school were analysed using Structural Equation Modelling (SEM) with LISREL 8.80 software. Findings: The MANOVA for self-reported physical activity demonstrated that both genders' physical activity decreased through junior high school. The MANOVA for the FMS revealed that the boys' FMS sumscore increased whereas the girls' skills decreased through junior high school. The SEM and squared multiple correlations revealed FMS in Grades 7 and 8 as well as physical activity in Grade 9 explained FMS in Grade 9. The portion of prediction was 69% for the girls and 55% for the boys. Additionally, physical activity measured in Grade 7 and FMS measured in Grade 9 explained physical activity in Grade 9. The portion of prediction was 12% for the girls and 29% for the boys. In the boys' group, three additional paths were found; FMS in Grade 7 explained physical activity in Grade 9, physical activity in Grade 7 explained FMS in Grade 8, and physical activity in Grade 7 explained physical activity in Grade 8. Conclusions: The study suggests that supporting and encouraging FMS and physical activity are co-related and when considering combined scores there is a greater likelihood of healthy lifelong outcomes. Therefore, the conclusion can be drawn that FMS curriculum in school-based PE is a plausible way to ensure good lifelong outcomes. Earlier studies support that school physical education plays an important role in developing students FMS and is in a position to thwart the typical decline of physical activity in adolescence. These concepts are particularly important for adolescent girls as this group reflects the greatest decline in physical activity during the adolescent period.
Resumo:
We consider the space fractional advection–dispersion equation, which is obtained from the classical advection–diffusion equation by replacing the spatial derivatives with a generalised derivative of fractional order. We derive a finite volume method that utilises fractionally-shifted Grünwald formulae for the discretisation of the fractional derivative, to numerically solve the equation on a finite domain with homogeneous Dirichlet boundary conditions. We prove that the method is stable and convergent when coupled with an implicit timestepping strategy. Results of numerical experiments are presented that support the theoretical analysis.
Resumo:
My quantitative study asks how Chinese Australians’ “Chineseness” and their various resources influence their Chinese language proficiency, using online survey and snowball sampling. ‘Operationalization’ is a challenging process which ensures that the survey design talks back to the informing theory and forwards to the analysis model. It requires the attention to two core methodological concerns, namely ‘validity’ and ‘reliability’. Construction of a high-quality questionnaire is critical to the achievement of valid and reliable operationalization. A series of strategies were chosen to ensure the quality of the questions, and thus the eventual data. These strategies enable the use of structural equation modelling to examine how well the data fits the theoretical framework, which was constructed in light of Bourdieu’s theory of habitus, capital and field.
Resumo:
An advanced rule-based Transit Signal Priority (TSP) control method is presented in this paper. An on-line transit travel time prediction model is the key component of the proposed method, which enables the selection of the most appropriate TSP plans for the prevailing traffic and transit condition. The new method also adopts a priority plan re-development feature that enables modifying or even switching the already implemented priority plan to accommodate changes in the traffic conditions. The proposed method utilizes conventional green extension and red truncation strategies and also two new strategies including green truncation and queue clearance. The new method is evaluated against a typical active TSP strategy and also the base case scenario assuming no TSP control in microsimulation. The evaluation results indicate that the proposed method can produce significant benefits in reducing the bus delay time and improving the service regularity with negligible adverse impacts on the non-transit street traffic.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.
Resumo:
In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In many modeling situations in which parameter values can only be estimated or are subject to noise, the appropriate mathematical representation is a stochastic ordinary differential equation (SODE). However, unlike the deterministic case in which there are suites of sophisticated numerical methods, numerical methods for SODEs are much less sophisticated. Until a recent paper by K. Burrage and P.M. Burrage (1996), the highest strong order of a stochastic Runge-Kutta method was one. But K. Burrage and P.M. Burrage (1996) showed that by including additional random variable terms representing approximations to the higher order Stratonovich (or Ito) integrals, higher order methods could be constructed. However, this analysis applied only to the one Wiener process case. In this paper, it will be shown that in the multiple Wiener process case all known stochastic Runge-Kutta methods can suffer a severe order reduction if there is non-commutativity between the functions associated with the Wiener processes. Importantly, however, it is also suggested how this order can be repaired if certain commutator operators are included in the Runge-Kutta formulation. (C) 1998 Elsevier Science B.V. and IMACS. All rights reserved.
Resumo:
Transition metal-free magnetism and half-metallicity recently has been the subject of intense research activity due to its potential in spintronics application. Here we, for the first time, demonstrate via density functional theory that the most recently experimentally realized graphitic carbon nitride (g-C4N3) displays a ferromagnetic ground state. Furthermore, this novel material is predicted to possess an intrinsic half-metallicity never reported to date. Our results highlight a new promising material toward realistic metal-free spintronics application.
Resumo:
The method of lines is a standard method for advancing the solution of partial differential equations (PDEs) in time. In one sense, the method applies equally well to space-fractional PDEs as it does to integer-order PDEs. However, there is a significant challenge when solving space-fractional PDEs in this way, owing to the non-local nature of the fractional derivatives. Each equation in the resulting semi-discrete system involves contributions from every spatial node in the domain. This has important consequences for the efficiency of the numerical solver, especially when the system is large. First, the Jacobian matrix of the system is dense, and hence methods that avoid the need to form and factorise this matrix are preferred. Second, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. In this paper, we show how an effective preconditioner is essential for improving the efficiency of the method of lines for solving a quite general two-sided, nonlinear space-fractional diffusion equation. A key contribution is to show, how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
Previous studies have enabled exact prediction of probabilities of identity-by-descent (IBD) in randommating populations for a few loci (up to four or so), with extension to more using approximate regression methods. Here we present a precise predictor of multiple-locus IBD using simple formulas based on exact results for two loci. In particular, the probability of non-IBD X ABC at each of ordered loci A, B, and C can be well approximated by XABC = XABXBC/XB and generalizes to X123. . .k = X12X23. . .Xk-1,k/ Xk-2, where X is the probability of non-IBD at each locus. Predictions from this chain rule are very precise with population bottlenecks and migration, but are rather poorer in the presence of mutation. From these coefficients, the probabilities of multilocus IBD and non-IBD can also be computed for genomic regions as functions of population size, time, and map distances. An approximate but simple recurrence formula is also developed, which generally is less accurate than the chain rule but is more robust with mutation. Used together with the chain rule it leads to explicit equations for non-IBD in a region. The results can be applied to detection of quantitative trait loci (QTL) by computing the probability of IBD at candidate loci in terms of identity-by-state at neighboring markers.
Resumo:
A novel multiple regression method (RM) is developed to predict identity-by-descent probabilities at a locus L (IBDL), among individuals without pedigree, given information on surrounding markers and population history. These IBDL probabilities are a function of the increase in linkage disequilibrium (LD) generated by drift in a homogeneous population over generations. Three parameters are sufficient to describe population history: effective population size (Ne), number of generations since foundation (T), and marker allele frequencies among founders (p). IBD L are used in a simulation study to map a quantitative trait locus (QTL) via variance component estimation. RM is compared to a coalescent method (CM) in terms of power and robustness of QTL detection. Differences between RM and CM are small but significant. For example, RM is more powerful than CM in dioecious populations, but not in monoecious populations. Moreover, RM is more robust than CM when marker phases are unknown or when there is complete LD among founders or Ne is wrong, and less robust when p is wrong. CM utilises all marker haplotype information, whereas RM utilises information contained in each individual marker and all possible marker pairs but not in higher order interactions. RM consists of a family of models encompassing four different population structures, and two ways of using marker information, which contrasts with the single model that must cater for all possible evolutionary scenarios in CM.
Resumo:
A new deterministic method for predicting simultaneous inbreeding coefficients at three and four loci is presented. The method involves calculating the conditional probability of IBD (identical by descent) at one locus given IBD at other loci, and multiplying this probability by the prior probability of the latter loci being simultaneously IBD. The conditional probability is obtained applying a novel regression model, and the prior probability from the theory of digenic measures of Weir and Cockerham. The model was validated for a finite monoecious population mating at random, with a constant effective population size, and with or without selfing, and also for an infinite population with a constant intermediate proportion of selfing. We assumed discrete generations. Deterministic predictions were very accurate when compared with simulation results, and robust to alternative forms of implementation. These simultaneous inbreeding coefficients were more sensitive to changes in effective population size than in marker spacing. Extensions to predict simultaneous inbreeding coefficients at more than four loci are now possible.
Resumo:
Bus travel time estimation and prediction are two important modelling approaches which could facilitate transit users in using and transit providers in managing the public transport network. Bus travel time estimation could assist transit operators in understanding and improving the reliability of their systems and attracting more public transport users. On the other hand, bus travel time prediction is an important component of a traveller information system which could reduce the anxiety and stress for the travellers. This paper provides an insight into the characteristic of bus in traffic and the factors that influence bus travel time. A critical overview of the state-of-the-art in bus travel time estimation and prediction is provided and the needs for research in this important area are highlighted. The possibility of using Vehicle Identification Data (VID) for studying the relationship between bus and cars travel time is also explored.
Resumo:
As one of the measures for decreasing road traffic noise in a city, the control of the traffic flow and the physical distribution is considered. To conduct the measure effectively, the model for predicting the traffic flow in the citywide road network is necessary. In this study, the existing model named AVENUE was used as a traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model and the sound propagation model, and the new road traffic noise prediction model was established. As a case study, the prediction model was applied to the road network of Tsukuba city in Japan and the noise map of the city was made. To examine the calculation accuracy of the noise map, the calculated values of the noise at the main roads were compared with the measured values. As a result, it was found that there was a possibility that the high accuracy noise map of the city could be made by using the noise prediction model developed in this study.
Resumo:
This report is the second deliverable of the Real Time and Predictive Traveller Information project and the first deliverable of the Freeway Travel Time Information sub-project in the Integrated Traveller Information research Domain of the Smart Transport Research Centre. The primary objective of the Freeway Travel Time Information sub-project is to develop algorithms for real-time travel time estimation and prediction models for Freeway traffic. The objective of this report is to review the literature pertaining to travel time estimation and prediction models for freeway traffic.