463 resultados para Docker,ARM,Raspberry PI,single board computer,QEMU,Sabayon Linux,Gentoo Linux
Resumo:
An electrified railway system includes complex interconnections and interactions of several subsystems. Computer simulation is the only viable means for system evaluation and analysis. This paper discusses the difficulties and requirements of effective simulation models for this specialized industrial application; and the development of a general-purpose multi-train simulator.
Resumo:
On-board mass (OBM) monitoring devices on heavy vehicles (HVs) have been tested in a national programme jointly by Transport Certification Australia Limited and the National Transport Commission. The tests were for, amongst other parameters, accuracy and tamper-evidence. The latter by deliberately tampering with the signals from OBM primary transducers during the tests. The OBM feasibility team is analysing dynamic data recorded at the primary transducers of OBM systems to determine if it can be used to detect tamper events. Tamper-evidence of current OBM systems needs to be determined if jurisdictions are to have confidence in specifying OBM for HVs as part of regulatory schemes. An algorithm has been developed to detect tamper events. The results of its application are detailed here.
Resumo:
With the recent regulatory reforms in a number of countries, railways resources are no longer managed by a single party but are distributed among different stakeholders. To facilitate the operation of train services, a train service provider (SP) has to negotiate with the infrastructure provider (IP) for a train schedule and the associated track access charge. This paper models the SP and IP as software agents and the negotiation as a prioritized fuzzy constraint satisfaction (PFCS) problem. Computer simulations have been conducted to demonstrate the effects on the train schedule when the SP has different optimization criteria. The results show that by assigning different priorities on the fuzzy constraints, agents can represent SPs with different operational objectives.
Resumo:
PURPOSE: To determine if participants with normal visual acuity, no ophthalmoscopically signs of age-related maculopathy (ARM) in both eyes and who are carriers of the CFH, LOC387715 and HRTA1 high-risk genotypes (“gene-positive”) have impaired rod- and cone-mediated mesopic visual function compared to persons who do not carry the risk genotypes (“gene-negative”).---------- METHODS: Fifty-three Caucasian study participants (mean 55.8 ± 6.1) were genotyped for CFH, LOC387715/ARMS2 and HRTA1 polymorphisms. We genotyped single nucleotide polymorphisms (SNPs) in the CFH (rs380390), LOC387715/ARMS2 (rs10490924) and HTRA1 (rs11200638) genes using Applied Biosystems optimised TaqMan assays. We determined the critical fusion frequency (CFF) mediated by cones alone (Long, Middle and Short wavelength sensitive cones; LMS) and by the combined activities of cones and rods (LMSR). The stimuli were generated using a 4-primary photostimulator that provides independent control of the photoreceptor excitation under mesopic light levels. Visual function was further assessed using standard clinical tests, flicker perimetry and microperimetry.---------- RESULTS: The mesopic CFF mediated by rods and cones (LMSR) was significantly reduced in gene-positive compared to gene-negative participants after correction for age (p=0.03). Cone-mediated CFF (LMS) was not significantly different between gene-positive and -negative participants. There were no significant associations between flicker perimetry and microperimetry and genotype.---------- CONCLUSIONS: This is the first study to relate ARM risk genotypes with mesopic visual function in clinically normal persons. These preliminary results could become of clinical importance as mesopic vision may be used to document sub-clinical retinal changes in persons with risk genotypes and to determine whether those persons progress into manifest disease.
Resumo:
This paper presents an extended study on the implementation of support vector machine(SVM) based speaker verification in systems that employ continuous progressive model adaptation using the weight-based factor analysis model. The weight-based factor analysis model compensates for session variations in unsupervised scenarios by incorporating trial confidence measures in the general statistics used in the inter-session variability modelling process. Employing weight-based factor analysis in Gaussian mixture models (GMM) was recently found to provide significant performance gains to unsupervised classification. Further improvements in performance were found through the integration of SVM-based classification in the system by means of GMM supervectors. This study focuses particularly on the way in which a client is represented in the SVM kernel space using single and multiple target supervectors. Experimental results indicate that training client SVMs using a single target supervector maximises performance while exhibiting a certain robustness to the inclusion of impostor training data in the model. Furthermore, the inclusion of low-scoring target trials in the adaptation process is investigated where they were found to significantly aid performance.
Resumo:
ASWEC is a joint conference of Engineers Australia and the Australian Computer Society reporting through the Engineers Australia/ACS Joint Board on Software Engineering.
Resumo:
The use of feedback technologies, in the form of products such as Smart Meters, is increasingly seen as the means by which 'consumers' can be made aware of their patterns of resource consumption, and to then use this enhanced awareness to change their behaviour to reduce the environmental impacts of their consumption. These technologies tend to be single-resource focused (e.g. on electricity consumption only) and their functionality defined by persons other than end-users (e.g. electricity utilities). This paper presents initial findings of end-users' experiences with a multi-resource feedback technology, within the context of sustainable housing. It proposes that an understanding of user context, supply chain management and market diffusion issues are important design considerations that contribute to technology 'success'.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.
Resumo:
The Transport Certification Australia on-board mass feasibility project is testing various on-board mass devices in a range of heavy vehicles (HVs). Extensive field tests of on-board mass measurement systems for HVs have been conducted during 2008. These tests were of accuracy, robustness and tamper-evidence of heavy vehicle on-board mass telematics. All the systems tested showed accuracies within approximately +/- 500 kg of gross combination mass or approximately +/- 2% of the attendant weighbridge reading. Analysis of the dynamic data also showed encouraging results and has raised the possibility of use of such dynamic information in tamper evidence in two areas. This analysis was to determine if the use of averaged dynamic data could identify potential tampering or incorrect operating procedures as well as the possibility of dynamic measurements flagging a tamper event by the use of metrics including a tampering index (TIX). Technical and business options to detect tamper events will now be developed during implementation of regulatory OBM system application to Australian heavy vehicles (HVs).
Resumo:
Porous polylactide constructs were prepared by stereolithography, for the first time without the use of reactive diluents. Star-shaped poly(D,L-lactide) oligomers with 2, 3 and 6 arms were synthesised, end-functionalised with methacryloyl chloride and photocrosslinked in the presence of ethyl lactate as a non-reactive diluent. The molecular weights of the arms of the macromers were 0.2, 0.6, 1.1 and 5 kg/mol, allowing variation of the crosslink density of the resulting networks. Networks prepared from macromers of which the molecular weight per arm was 0.6 kg/mol or higher had good mechanical properties, similar to linear high molecular weight poly(D,L-lactide). A resin based on a 2-armed poly(D,L-lactide) macromer with a molecular weight of 0.6 kg/mol per arm (75 wt%), ethyl lactate (19 wt%), photo-initiator (6 wt%), inhibitor and dye was prepared. Using this resin, films and computer-designed porous constructs were accurately fabricated by stereolithography. Pre-osteoblasts showed good adherence to these photocrosslinked networks. The proliferation rate on these materials was comparable to that on high molecular weight poly(D,L-lactide) and tissue culture polystyrene.
Resumo:
This paper presents research in response to environmental concerns we face today. In a search for a better method to manage spaces and building resources consumed excessively through traditional top-down architectural solutions, the research began by speculating that the building spaces and resources can be managed by designing architectural systems that encourage a bottom-up approach. In other words, this research investigates how to design systems that encourage occupants and users of buildings to actively understand, manage and customise their own spaces. Specific attention is paid to the participation of building users because no matter how sophisticated the system is, the building will become as wasteful as conventional buildings if users cannot, or do not want to, utilise the system effectively. The research is still in its early stages. The intension of this paper is to provide a background to the issue, discuss researches and projects relevant to, but not necessarily about, architecture, and introduce a number of hypothesis and investigations to realise adaptable, participatory and sustainable environments for users.
Resumo:
This article explores how the boards of small firms actually undertake to perform strategic tasks. Board strategic involvement has seldom been investigated in the context of small firms. We seek to make a contribution by investigating antecedents of board strategic involvement. The antecedents are “board working style” and “board quality attributes”, which go beyond the board composition features of board size, CEO duality, the ratio of non-executive to executive directors and ownership. Hypotheses were tested on a sample of 497 Norwegian firms (from 5 to 30 employees). Our results show that board working style and board quality attributes rather than board composition features enhance board strategic involvement. Moreover, board quality attributes outperform board working style in fostering board strategic involvement
Resumo:
This paper reports on the development of specifications for an on-board mass monitoring (OBM) application for regulatory requirements in Australia. An earlier paper reported on feasibility study and pilot testing program prior to the specification development [1]. Learnings from the pilot were used to refine this testing process and a full scale testing program was conducted from July to October 2008. The results from the full scale test and evidentiary implications are presented in this report. The draft specification for an evidentiary on-board mass monitoring application is currently under development.
Resumo:
As organizations reach higher levels of Business Process Management maturity, they tend to accumulate large collections of process models. These repositories may contain thousands of activities and be managed by different stakeholders with varying skills and responsibilities. However, while being of great value, these repositories induce high management costs. Thus, it becomes essential to keep track of the various model versions as they may mutually overlap, supersede one another and evolve over time. We propose an innovative versioning model and associated storage structure, specifically designed to maximize sharing across process model versions, and to automatically handle change propagation. The focal point of this technique is to version single process model fragments, rather than entire process models. Indeed empirical evidence shows that real-life process model repositories have numerous duplicate fragments. Experiments on two industrial datasets confirm the usefulness of our technique.
Resumo:
A SNP genotyping method was developed for E. faecalis and E. faecium using the 'Minimum SNPs' program. SNP sets were interrogated using allele-specific real-time PCR. SNP-typing sub-divided clonal complexes 2 and 9 of E. faecalis and 17 of E. faecium, members of which cause the majority of nosocomial infections globally.