306 resultados para DRUG-BINDING
Resumo:
Peptides constructed from α-helical subunits of the Lac repressor protein (LacI) were designed then tailored to achieve particular binding kinetics and dissociation constants for plasmid DNA purification and detection. Surface plasmon resonance was employed for quantification and characterization of the binding of double stranded Escherichia coli plasmid DNA (pUC19) via the lac operon (lacO) to "biomimics" of the DNA binding domain of LacI. Equilibrium dissociation constants (K D), association (k a), and dissociation rates (k d) for the interaction between a suite of peptide sequences and pUC19 were determined. K D values measured for the binding of pUC19 to the 47mer, 27mer, 16mer, and 14mer peptides were 8.8 ± 1.3 × 10 -10 M, 7.2 ± 0.6 × 10 -10 M, 4.5 ± 0.5 × 10 -8 M, and 6.2 ± 0.9 × 10 -6 M, respectively. These findings show that affinity peptides, composed of subunits from a naturally occurring operon-repressor interaction, can be designed to achieve binding characteristics suitable for affinity chromatography and biosensor devices.
Resumo:
Background The adsorption of bovine serum albumin (BSA) onto mesoporous silica spheres (MPS) synthesized from silica colloids was studied employing real time in situ measurements. The stabilities of the BSA at different pH values, their isoelectric points and zeta potentials were determined in order to probe the interactions between the protein and the mesoporous silica. Results The pore size of MPS was designed for protein, and this, coupled with an in depth understanding of the physico-chemical characteristics of the protein and MPS has yielded a better binding capacity and delivery profile. The adsorption isotherm at pH 4.2 fitted the Langmuir model and displayed the highest adsorption capacity (71.43 mg mL-1 MPS). Furthermore, the delivery rates of BSA from the MPS under physiological conditions were shown to be dependent on the ionic strength of the buffer and protein loading concentration. Conclusion Economics and scale-up considerations of mesoporous material synthesized via destabilization of colloids by electrolyte indicate the scaleability and commercial viability of this technology as a delivery platform for biopharmaceutical applications.
Resumo:
Plasmid DNA for therapeutic and vaccination purposes must be highly purified. The high selectivity of affinity chromatography makes it ideal for the isolation of pDNA from complex biological feed stocks. Affinity chromatography makes use of the biological function and/or individual chemical structure of the interacting molecules. However, the success of any affinity purification protocol is dependent on the availability of suitable ligands. In this study, surface plasmon resonance (SPR) based Biacore system has been employed for the detection and quantification of the binding between lac operon (lacO) sequence contained in a pDNA and synthetic peptides based on the DNA-binding domain of the lac repressor protein, lad. The equilibrium dissociation constant (K D) and association and dissociation rate constants (ka, kd) for the interaction between plasmid DNA and designed peptides were determined.
Resumo:
The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.
Resumo:
A monolithic stationary phase was prepared via free radical co-polymerization of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with pore diameter tailored specifically for plasmid binding, retention and elution. The polymer was functionalized. with 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) for anion-exchange purification of plasmid DNA (pDNA) from clarified lysate obtained from E. coli DH5α-pUC19 culture in a ribonuclease/ protease-free environment. Characterization of the monolithic resin showed a porous material, with 68% of the pores existing in the matrix having diameters above 300 nm. The final product isolated from a single-stage 5 min anion-exchange purification was a pure and homogeneous supercoiled (SC) pDNA with no gDNA, RNA and protein contamination as confirmed by ethidium bromide agarose gel electrophoresis (EtBr-AGE), enzyme restriction analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This non-toxic technique is cGMP compatible and highly scalable for production of pDNA on a commercial level.
Resumo:
Current approaches for purifying plasmids from bacterial production systems exploit the physiochemical properties of nucleic acids in non-specific capture systems. In this study, an affinity system for plasmid DNA (pDNA) purification has been developed utilizing the interaction between the lac operon (lacO) sequence contained in the pDNA and a 64mer synthetic peptide representing the DNA-binding domain of the lac repressor protein, LacI. Two plasmids were evaluated, the native pUC19 and pUC19 with dual lacO3/lacOs operators (pUC19lacO3/lacOs), where the lacOs operator is perfectly symmetrical. The DNA-protein affinity interaction was evaluated by surface plasmon resonance using a Biacore system. The affinity capture of DNA in a chromatography system was evaluated using LacI peptide that had been immobilized to Streamline™ adsorbent. The KD-values for double stranded DNA (dsDNA) fragments containing lacO1 and lacO3 and lacOs and lacO3 were 5.7 ± 0.3 × 10 -11 M and 4.1 ± 0.2 × 10-11 M respectively, which compare favorably with literature reports of 5 × 10-10 - 1 × 10-9 M for native laCO1 and 1-1.2 × 10-10 M for lacO1 in a saline buffer. Densitometric analysis of the gel bands from the affinity chromatography run clearly showed a significant preference for capture of the supercoiled fraction from the feed pDNA sample. The results indicate the feasibility of the affinity approach for pDNA capture and purification using native protein-DNA interaction.
Resumo:
The maturing of the biotechnology industry and a focus on productivity has seen a shift from discovery science to small-scale bench-top research to higher productivity, large scale production. Health companies are aggressively expanding their biopharmaceutical interests, an expansion which is facilitated by biochemical and bioprocess engineering. An area of continuous growth is vaccines. Vaccination will be a key intervention in the case of an influenza pandemic. The global manufacturing capacity for fast turn around vaccines is currently woefully inadequate at around 300 million shots. As the prevention of epidemics requires > 80 % vaccination, in theory the world should currently be aiming for the ability to produce around 5.3 billion vaccines. Presented is a production method for the creation of a fast turn around DNA vaccine. A DNA vaccine could have a production time scale of as little as two weeks. This process has been harnessed into a pilot scale production system for the creation of a pre-clinical grade malaria vaccine in a collaborative project with the Coppel Lab, Department of Microbiology, Monash University. In particular, improvements to the fermentation, chromatography and delivery stages will be discussed. Consideration will then be given as to how the fermentation stage affects the mid and downstream processing stages.
Resumo:
Computer graphic analyses on a broad spectrum of adenosine receptor ligands has shown that both the A1 and A2 adenosine receptors have three binding sites. The spatial relationship of these three binding sites has been defined. Adenosine orientation at A1 and A2 is different.
Resumo:
As negative employee attitudes towards alcohol and other drug (AOD) policies may have serious consequences for organizations, the present study examined demographic and attitudinal dimensions leading to employees’ perceptions of AOD policy effectiveness. Survey responses were obtained from 147 employees in an Australian agricultural organization. Three dimensions of attitudes towards AOD policies were examined: knowledge of policy features, attitudes towards testing, and preventative measures such as job design and organizational involvement in community health. Demographic differences were identified, with males and blue-collar employees reporting significantly more negative attitudes towards the AOD policy. Attitude dimensions were stronger predictors of perceptions of policy effectiveness than demographics, and the strongest predictor was preventative measures. This suggests that organizations should do more than design adequate and fair AOD policies, and take a more holistic approach to AOD impairment by engaging in workplace design to reduce AOD use and promote a consistent health message to employees and the community.
Resumo:
The study sought to explore the initial impact of the ACT's implementation of roadside oral fluid drug screening program. The results suggest that a number of individuals reported intentions to drug drive in the future. The classical deterrence theory variables of certainty of apprehension, severity and swiftness of sanctions were not predictive of intentions to drug drive in the future. In contrast, having avoided apprehension and having known of others that have avoided apprehension were predictive of intentions to drug drive in the future. Increasing perceptions of the certainty of apprehension, increased testing frequency, and increased awareness of the oral fluid drug screening program could potentially lead to reductions of drug driving and result in safer road environment for all ACT community members.
Resumo:
The New South Wales (NSW) Centre for Road Safety (CRS) called for research services to conduct a review of international policy and practice to address drug-driving. The project sought to provide Transport for NSW (TfNSW) with a comprehensive review of current and emerging international practices in this area1. This report is submitted by the Centre for Accident Research and Road Safety – Queensland (CARRS-Q)...
Resumo:
Alcohol-related mortality and morbidity represents a substantial financial burden on communities across the world. Adolescence and young adulthood is a peak period for heavy episodic alcohol consumption, with over a third of all people aged 14-19 years having been at risk of acute alcoholrelated harm at least once in the previous 12 months (Australian Institute of Health and Welfare [AIHW], 2011). Excessive alcohol consumption has long been seen as a male problem; however, a gradual shift towards a social acceptance of female drunkenness has narrowed the gap in drinking quantity and style between men and women (Grucza, Bucholz, Rice, & Bierut, 2008). The presented data point to the vulnerability of women to the consequences of acute alcohol intoxication and indicate that alcohol-related offending by women is on the rise. Taken together, these findings reveal that alcohol-related harms and aggression for young women are becoming more prevalent and problematic. This report addressed these issues from a policing perspective...
Resumo:
Aim: The aim of this evaluation was to evaluate the use of Individualised Medication Administration Guides (IMAGs) for patients with dysphagia on one stroke ward over a 6month period. Background: Patients with dysphagia (PWD) are more likely to suffer an administration error than patients without swallowing difficulties. To both standardise and improve medicines administration to patients with dysphagia I-MAGs were introduced on one stroke ward over a 6 month period. Methods: A software package supported with data on current national guidelines on the administration of medicines to PWD was designed by a specialised pharmacist in dysphagia to enable him to create individualised medication administration guides for patients with dysphagia which stated how each medicine should be optimally prepared and administered. On completion of the pilot service a questionnaire was given to all nurses, pharmacist and speech and language therapists who had experienced the I-MAGs. All the professionals received the same questionnaire but questions relevant only to their practice were added to the nurse’s questionnaire. Results: Of 26 Healthcare professionals (HCPs) approached, 19 returned completed questionnaires. Higher variability was found in the 13 responses from the nurse respondents than in the ones from the 3 pharmacist and the 3 SALTs. 8 (61%) of the nurses felt more confident in their practice when I-MAGs were in place. 10 (76%) of the nurses admitted that the guides could sometimes increase the time of the administration, but saw that it made practice safer. All the pharmacists considered the recommendations in the guides useful and all the respondents with the exception of one nurse (12:13) would like this service to continue. Conclusion: I-MAGs were well received on the ward and they support individualised care for patients with dysphagia. But the guides needed additional pharmacist input and greater nursing time. Research to determine the cost effectiveness of I-MAGs is needed.