270 resultados para Cultivation without soil
Resumo:
The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell‑Counting kit‑8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.
Resumo:
Acid sulfate soils (ASS) is a stress factor that is responsible for the failure of some mangrove restoration projects, including abandoned aquaculture ponds converted from mangrove ecosystems. Through experimental and field studies, this research provides a better understanding of the biogeochemistry of ASS disturbance and the response of mangrove seedlings (Rhizophoraceae) under high metal levels and acidic conditions. This study found that mangrove restorations under ASS disturbance can work but with lower numbers of survived seedlings. To prevent toxicity under high levels of metal, seedlings retained metals in their roots and sparingly distributed them into aerial parts with low mobility. The presence of high levels of potential acidity parameters would allow pyrite to oxidise, thus increasing metal levels and acidity, which in turn affected the survival and growth of the seedlings.
Resumo:
A recent review by Panagoulias and Doupis, published in Patient Preference and Adherence, concerned the saxagliptin/metformin fixed combination (SAXA/MET FDC), and was titled "Clinical utility in the treatment of type 2 diabetes with the saxagliptin/metformin fixed combination."1 This review concluded that "The SAXA/MET FDC is a patient-friendly, dosage-flexible, and hypoglycemia-safe regimen with very few adverse events and a neutral or even favorable effect on body weight. It achieves significant glycosylated hemoglobin A1c reduction helping the patient to achieve his/her individual glycemic goals."1
Resumo:
Spatial variation of seismic ground motions is caused by incoherence effect, wave passage, and local site conditions. This study focuses on the effects of spatial variation of earthquake ground motion on the responses of adjacent reinforced concrete (RC) frame structures. The adjacent buildings are modeled considering soil-structure interaction (SSI) so that the buildings can be interacted with each other under uniform and non-uniform ground motions. Three different site classes are used to model the soil layers of SSI system. Based on fast Fourier transformation (FFT), spatially correlated non-uniform ground motions are generated compatible with known power spectrum density function (PSDF) at different locations. Numerical analyses are carried out to investigate the displacement responses and the absolute maximum base shear forces of adjacent structures subjected to spatially varying ground motions. The results are presented in terms of related parameters affecting the structural response using three different types of soil site classes. The responses of adjacent structures have changed remarkably due to spatial variation of ground motions. The effect can be significant on rock site rather than clay site.
Resumo:
Purpose The aim of the study was to determine the association, agreement, and detection capability of manual, semiautomated, and fully automated methods of corneal nerve fiber length (CNFL) quantification of the human corneal subbasal nerve plexus (SNP). Methods Thirty-three participants with diabetes and 17 healthy controls underwent laser scanning corneal confocal microscopy. Eight central images of the SNP were selected for each participant and analyzed using manual (CCMetrics), semiautomated (NeuronJ), and fully automated (ACCMetrics) software to quantify the CNFL. Results For the entire cohort, mean CNFL values quantified by CCMetrics, NeuronJ, and ACCMetrics were 17.4 ± 4.3 mm/mm2, 16.0 ± 3.9 mm/mm2, and 16.5 ± 3.6 mm/mm2, respectively (P < 0.01). CNFL quantified using CCMetrics was significantly higher than those obtained by NeuronJ and ACCMetrics (P < 0.05). The 3 methods were highly correlated (correlation coefficients 0.87–0.98, P < 0.01). The intraclass correlation coefficients were 0.87 for ACCMetrics versus NeuronJ and 0.86 for ACCMetrics versus CCMetrics. Bland–Altman plots showed good agreement between the manual, semiautomated, and fully automated analyses of CNFL. A small underestimation of CNFL was observed using ACCMetrics with increasing the amount of nerve tissue. All 3 methods were able to detect CNFL depletion in diabetic participants (P < 0.05) and in those with peripheral neuropathy as defined by the Toronto criteria, compared with healthy controls (P < 0.05). Conclusions Automated quantification of CNFL provides comparable neuropathy detection ability to manual and semiautomated methods. Because of its speed, objectivity, and consistency, fully automated analysis of CNFL might be advantageous in studies of diabetic neuropathy.
Resumo:
Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.
Resumo:
It is well understood that that there is variation inherent in all testing techniques, and that all soil and rock materials also contain some degree of natural variability. Less consideration is normally given to variation associated with natural material heterogeneity within a site, or the relative condition of the material at the time of testing. This paper assesses the impact of spatial and temporal variability upon repeated insitu testing of a residual soil and rock profile present within a single residential site over a full calendar year, and thus range of seasonal conditions. From this repeated testing, the magnitude of spatial and temporal variation due to seasonal conditions has demonstrated that, depending on the selected location and moisture content of the subsurface at the time of testing, up to a 35% variation within the test results can be expected. The results have also demonstrated that the completed insitu test technique has a similarly large measurement and inherent variability error and, for the investigated site, up to a 60% variation in normalised results was observed. From these results, it is recommended that the frequency and timing of insitu tests should be considered when deriving geotechnical design parameters from a limited data set.
Resumo:
In this paper, the axial performance of two heavily instrumented barrette piles, with and without grouting, socket into gravel layer in Taipei are evaluated based on the results of pile load tests. Both piles are 44 m long with the same dimension of 0.8 by 2.7 m, installed by hydraulic long bucket. One of the piles with toe grouting was socket 6 m into gravel layer and the other pile without toe grouting was socket 3 m into gravel layer. The load versus displacement relationships at pile head, the t-z curves of upper soil layers and of bottom gravel layer, and the tip resistance versus displacement relationships are important concerns and are presented in the paper. The t-z curves interpreted from the measured data along depth are also simulated by the hyperbolic model.
Resumo:
Research indicates significant health disparities for individuals with autism. Insight into characteristic sensory, cognitive, communication, social, emotional, and behavioural challenges that may influence health communication for patients with autism is vital to address potential disparities. Women with high functioning autism spectrum disorder (ASD) may have specific healthcare needs, and are likely to independently represent themselves and others in healthcare. A pilot study compared perceptions of healthcare experiences for women with and without ASD using on-line survey based on characteristics of ASD likely to influence healthcare. Fifty-eight adult female participants (32 with ASD diagnosis, 26 without ASD diagnosis) were recruited on-line from autism support organisations. Perceptions measured included self-reporting of pain and symptoms, healthcare seeking behaviours, the influence of emotional distress, sensory and social anxiety, maternity experiences, and the influence of autistic status disclosure. Results partially support the hypothesis that ASD women experience greater healthcare challenges. Women with ASD reported greater challenges in healthcare anxiety, communication under emotional distress, anxiety relating to waiting rooms, support during pregnancy, and communication during childbirth. Self-disclosure of diagnostic status and lack of ASD awareness by healthcare providers rated as highly problematic. Results offer detailed insight into healthcare communication and disparities for women with ASD.
Resumo:
Hydrogeophysics is a growing discipline that holds significant promise to help elucidate details of dynamic processes in the near surface, built on the ability of geophysical methods to measure properties from which hydrological and geochemical variables can be derived. For example, bulk electrical conductivity is governed by, amongst others, interstitial water content, fluid salinity, and temperature, and can be measured using a range of geophysical methods. In many cases, electrical resistivity tomography (ERT) is well suited to characterize these properties in multiple dimensions and to monitor dynamic processes, such as water infiltration and solute transport. In recent years, ERT has been used increasingly for ecosystem research in a wide range of settings; in particular to characterize vegetation-driven changes in root-zone and near-surface water dynamics. This increased popularity is due to operational factors (e.g., improved equipment, low site impact), data considerations (e.g., excellent repeatability), and the fact that ERT operates at scales significantly larger than traditional point sensors. Current limitations to a more widespread use of the approach include the high equipment costs, and the need for site-specific petrophysical relationships between properties of interest. In this presentation we will discuss recent equipment advances and theoretical and methodological aspects involved in the accurate estimation of soil moisture from ERT results. Examples will be presented from two studies in a temperate climate (Michigan, USA) and one from a humid tropical location (Tapajos, Brazil).
Resumo:
Electrical resistivity of soils and sediments is strongly influenced by the presence of interstitial water. Taking advantage of this dependency, electrical-resistivity imaging (ERI) can be effectively utilized to estimate subsurface soil-moisture distributions. The ability to obtain spatially extensive data combined with time-lapse measurements provides further opportunities to understand links between land use and climate processes. In natural settings, spatial and temporal changes in temperature and porewater salinity influence the relationship between soil moisture and electrical resistivity. Apart from environmental factors, technical, theoretical, and methodological ambiguities may also interfere with accurate estimation of soil moisture from ERI data. We have examined several of these complicating factors using data from a two-year study at a forest-grassland ecotone, a boundary between neighboring but different plant communities.At this site, temperature variability accounts for approximately 20-45 of resistivity changes from cold winter to warm summer months. Temporal changes in groundwater conductivity (mean=650 S/cm =57.7) and a roughly 100-S/cm spatial difference between the forest and grassland had only a minor influence on the moisture estimates. Significant seasonal fluctuations in temperature and precipitation had negligible influence on the basic measurement errors in data sets. Extracting accurate temporal changes from ERI can be hindered by nonuniqueness of the inversion process and uncertainties related to time-lapse inversion schemes. The accuracy of soil moisture obtained from ERI depends on all of these factors, in addition to empirical parameters that define the petrophysical soil-moisture/resistivity relationship. Many of the complicating factors and modifying variables to accurately quantify soil moisture changes with ERI can be accounted for using field and theoretical principles.
Resumo:
Magnetic properties of soils have been highlighted as a primary detrimental environmental effect on the performance of geophysical systems for detection of unexploded ordnance (UXO) and mine targets. A recent workshop at Cranfield University, U.K., aimed to identify knowledge gaps related to soil magnetism. Eight invited speakers from multidisciplinary areas provided briefings on state‐of‐the‐art research linked to soil magnetism and geophysical sensing. Contributions from other participants provided additional insights from a range of disciplines through case studies and applications. The workshop included break‐out sessions to identify current gaps in knowledge and to determine priority areas for investment in research to further developments in UXO and mine detection in magnetic soil environments. Key recommendations for future research investments have been grouped in categories including soils, theory and modeling, instrumentation, and communication.