795 resultados para Consecutive Analysis of Variants
Resumo:
Two kinds of coal-bearing kaolinite from China were analysed by X-ray diffraction (XRD), Thermogravimetric analysis-mass spectrometry (TG-MS), infrared emission spectroscopy. Thermal decomposition occurs in a series of steps attributed to (a) desorption of water at 68 °C for Datong coal bearing strata kaolinite and 56 °C for Xiaoxian with mass losses of 0.36 % and 0.51 % (b) decarbonization at 456 °C for Datong coal bearing strata kaolinite and 431 °C for Xiaoxian kaolinite, (c) dehydroxylation takes place in two steps at 589 and 633 °C for Datong coal bearing strata kaolinite and at 507 °C and 579 °C for Xiaoxian kaolinite. This mineral were further characterised by infrared emission spectroscopy (IES). Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm-1 are observed. At 650 °C all intensity in these bands is lost in harmony with the thermal analysis results. Characteristic functional groups from coal are observed at 1918, 1724 and 1459 cm-1. The intensity of these bands decrease by thermal treatment and is lost by 700 °C.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the potential advantages of cheaper and increased sampling. An acoustic event detection algorithm is introduced that outputs a compact rectangular marquee description of each event. It can disentangle superimposed events, which are a common occurrence during morning and evening choruses. Next, three uses to which acoustic event detection can be put are illustrated. These tasks have been selected because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are a frequent contaminant of recordings of the terrestrial environment; (2) the detection of bird calls using the spatial distribution of their component events; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.
Resumo:
Confirmatory factor analyses were conducted to evaluate the factorial validity of the Toronto Alexithymia Scale in an alcohol-dependent sample. Several factor models were examined, but all models were rejected given their poor fit. A revision of the TAS-20 in alcohol-dependent populations may be needed.
Resumo:
Since the formal recognition of practice-led research in the 1990s, many higher research degree candidates in art, design and media have submitted creative works along with an accompanying written document or ‘exegesis’ for examination. Various models for the exegesis have been proposed in university guidelines and academic texts during the past decade, and students and supervisors have experimented with its contents and structure. With a substantial number of exegeses submitted and archived, it has now become possible to move beyond proposition to empirical analysis. In this article we present the findings of a content analysis of a large, local sample of submitted exegeses. We identify the emergence of a persistent pattern in the types of content included as well as overall structure. Besides an introduction and conclusion, this pattern includes three main parts, which can be summarized as situating concepts (conceptual definitions and theories); precedents of practice (traditions and exemplars in the field); and researcher’s creative practice (the creative process, the artifacts produced and their value as research). We argue that this model combines earlier approaches to the exegesis, which oscillated between academic objectivity, by providing a contextual framework for the practice, and personal reflexivity, by providing commentary on the creative practice. But this model is more than simply a hybrid: it provides a dual orientation, which allows the researcher to both situate their creative practice within a trajectory of research and do justice to its personally invested poetics. By performing the important function of connecting the practice and creative work to a wider emergent field, the model helps to support claims for a research contribution to the field. We call it a connective model of exegesis.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the potential advantages of cheaper and increased sampling. An acoustic event detection algorithm is introduced that outputs a compact rectangular marquee description of each event. It can disentangle superimposed events, which are a common occurrence during morning and evening choruses. Next, three uses to which acoustic event detection can be put are illustrated. These tasks have been selected because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are a frequent contaminant of recordings of the terrestrial environment; (2) the detection of bird calls using the spatial distribution of their component events; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
The large deformation analysis is one of major challenges in numerical modelling and simulation of metal forming. Because no mesh is used, the meshfree methods show good potential for the large deformation analysis. In this paper, a local meshfree formulation, based on the local weak-forms and the updated Lagrangian (UL) approach, is developed for the large deformation analysis. To fully employ the advantages of meshfree methods, a simple and effective adaptive technique is proposed, and this procedure is much easier than the re-meshing in FEM. Numerical examples of large deformation analysis are presented to demonstrate the effectiveness of the newly developed nonlinear meshfree approach. It has been found that the developed meshfree technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming.
Resumo:
This report applies CCI’s creative trident methodology with the definition of the arts as established by the Australia Council for the Arts to data sourced from Australia’s national census data (from 1996, 2001 and the most recent one in 2006). Analysis has been conducted on employment, income, gender, age and the nature of employment for artists and arts related workers within and beyond the arts industries, as well as other support workers in the arts industries.
Resumo:
Insight into the unique structure of layered double hydroxides has been obtained using a combination of X-ray diffraction and thermal analysis. Indium containing hydrotalcites of formula Mg4In2(CO3)(OH)12•4H2O (2:1 In-LDH) through to Mg8In2(CO3)(OH)18•4H2O (4:1 In-LDH) with variation in the Mg:In ratio have been successfully synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 LDH to 8.15 Å for the 3:1 indium containing layered double hydroxide. Distinct mass loss steps attributed to dehydration, dehydroxylation and decarbonation are observed for the indium containing hydrotalcite. Dehydration occurs over the temperature range ambient to 205 °C. Dehydroxylation takes place in a series of steps over the 238 to 277 °C temperature range. Decarbonation occurs between 763 and 795 °C. The dehydroxylation and decarbonation steps depend upon the Mg:In ratio. The formation of indium containing hydrotalcites and their thermal activation provides a method for the synthesis of indium oxide based catalysts.
Resumo:
To date, most applications of algebraic analysis and attacks on stream ciphers are on those based on lin- ear feedback shift registers (LFSRs). In this paper, we extend algebraic analysis to non-LFSR based stream ciphers. Specifically, we perform an algebraic analysis on the RC4 family of stream ciphers, an example of stream ciphers based on dynamic tables, and inves- tigate its implications to potential algebraic attacks on the cipher. This is, to our knowledge, the first pa- per that evaluates the security of RC4 against alge- braic attacks through providing a full set of equations that describe the complex word manipulations in the system. For an arbitrary word size, we derive alge- braic representations for the three main operations used in RC4, namely state extraction, word addition and state permutation. Equations relating the inter- nal states and keystream of RC4 are then obtained from each component of the cipher based on these al- gebraic representations, and analysed in terms of their contributions to the security of RC4 against algebraic attacks. Interestingly, it is shown that each of the three main operations contained in the components has its own unique algebraic properties, and when their respective equations are combined, the resulting system becomes infeasible to solve. This results in a high level of security being achieved by RC4 against algebraic attacks. On the other hand, the removal of an operation from the cipher could compromise this security. Experiments on reduced versions of RC4 have been performed, which confirms the validity of our algebraic analysis and the conclusion that the full RC4 stream cipher seems to be immune to algebraic attacks at present.
Resumo:
Spectrum sensing is considered to be one of the most important tasks in cognitive radio. Many sensing detectors have been proposed in the literature, with the common assumption that the primary user is either fully present or completely absent within the window of observation. In reality, there are scenarios where the primary user signal only occupies a fraction of the observed window. This paper aims to analyse the effect of the primary user duty cycle on spectrum sensing performance through the analysis of a few common detectors. Simulations show that the probability of detection degrades severely with reduced duty cycle regardless of the detection method. Furthermore we show that reducing the duty cycle has a greater degradation on performance than lowering the signal strength.
Resumo:
In this thesis, the relationship between air pollution and human health has been investigated utilising Geographic Information System (GIS) as an analysis tool. The research focused on how vehicular air pollution affects human health. The main objective of this study was to analyse the spatial variability of pollutants, taking Brisbane City in Australia as a case study, by the identification of the areas of high concentration of air pollutants and their relationship with the numbers of death caused by air pollutants. A correlation test was performed to establish the relationship between air pollution, number of deaths from respiratory disease, and total distance travelled by road vehicles in Brisbane. GIS was utilized to investigate the spatial distribution of the air pollutants. The main finding of this research is the comparison between spatial and non-spatial analysis approaches, which indicated that correlation analysis and simple buffer analysis of GIS using the average levels of air pollutants from a single monitoring station or by group of few monitoring stations is a relatively simple method for assessing the health effects of air pollution. There was a significant positive correlation between variable under consideration, and the research shows a decreasing trend of concentration of nitrogen dioxide at the Eagle Farm and Springwood sites and an increasing trend at CBD site. Statistical analysis shows that there exists a positive relationship between the level of emission and number of deaths, though the impact is not uniform as certain sections of the population are more vulnerable to exposure. Further statistical tests found that the elderly people of over 75 years age and children between 0-15 years of age are the more vulnerable people exposed to air pollution. A non-spatial approach alone may be insufficient for an appropriate evaluation of the impact of air pollutant variables and their inter-relationships. It is important to evaluate the spatial features of air pollutants before modeling the air pollution-health relationships.
Resumo:
World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.