495 resultados para Biological Monitoring
Resumo:
Background Despite its efficacy and cost-effectiveness, exercise-based cardiac rehabilitation is undertaken by less than one-third of clinically eligible cardiac patients in every country for which data is available. Reasons for non-participation include the unavailability of hospital-based rehabilitation programs, or excessive travel time and distance. For this reason, there have been calls for the development of more flexible alternatives. Methodology and Principal Findings We developed a system to enable walking-based cardiac rehabilitation in which the patient's single-lead ECG, heart rate, GPS-based speed and location are transmitted by a programmed smartphone to a secure server for real-time monitoring by a qualified exercise scientist. The feasibility of this approach was evaluated in 134 remotely-monitored exercise assessment and exercise sessions in cardiac patients unable to undertake hospital-based rehabilitation. Completion rates, rates of technical problems, detection of ECG changes, pre- and post-intervention six minute walk test (6 MWT), cardiac depression and Quality of Life (QOL) were key measures. The system was rated as easy and quick to use. It allowed participants to complete six weeks of exercise-based rehabilitation near their homes, worksites, or when travelling. The majority of sessions were completed without any technical problems, although periodic signal loss in areas of poor coverage was an occasional limitation. Several exercise and post-exercise ECG changes were detected. Participants showed improvements comparable to those reported for hospital-based programs, walking significantly further on the post-intervention 6 MWT, 637 m (95% CI: 565–726), than on the pre-test, 524 m (95% CI: 420–655), and reporting significantly reduced levels of cardiac depression and significantly improved physical health-related QOL. Conclusions and Significance The system provided a feasible and very flexible alternative form of supervised cardiac rehabilitation for those unable to access hospital-based programs, with the potential to address a well-recognised deficiency in health care provision in many countries. Future research should assess its longer-term efficacy, cost-effectiveness and safety in larger samples representing the spectrum of cardiac morbidity and severity.
Resumo:
Background When large scale trials are investigating the effects of interventions on appetite, it is paramount to efficiently monitor large amounts of human data. The original hand-held Electronic Appetite Ratings System (EARS) was designed to facilitate the administering and data management of visual analogue scales (VAS) of subjective appetite sensations. The purpose of this study was to validate a novel hand-held method (EARS II (HP® iPAQ)) against the standard Pen and Paper (P&P) method and the previously validated EARS. Methods Twelve participants (5 male, 7 female, aged 18-40) were involved in a fully repeated measures design. Participants were randomly assigned in a crossover design, to either high fat (>48% fat) or low fat (<28% fat) meal days, one week apart and completed ratings using the three data capture methods ordered according to Latin Square. The first set of appetite sensations was completed in a fasted state, immediately before a fixed breakfast. Thereafter, appetite sensations were completed every thirty minutes for 4h. An ad libitum lunch was provided immediately before completing a final set of appetite sensations. Results Repeated measures ANOVAs were conducted for ratings of hunger, fullness and desire to eat. There were no significant differences between P&P compared with either EARS or EARS II (p > 0.05). Correlation coefficients between P&P and EARS II, controlling for age and gender, were performed on Area Under the Curve ratings. R2 for Hunger (0.89), Fullness (0.96) and Desire to Eat (0.95) were statistically significant (p < 0.05). Conclusions EARS II was sensitive to the impact of a meal and recovery of appetite during the postprandial period and is therefore an effective device for monitoring appetite sensations. This study provides evidence and support for further validation of the novel EARS II method for monitoring appetite sensations during large scale studies. The added versatility means that future uses of the system provides the potential to monitor a range of other behavioural and physiological measures often important in clinical and free living trials.
Resumo:
Maternal deaths have been a critical issue for women living in rural and remote areas. The need to travel long distances, the shortage of primary care providers such as physicians, specialists and nurses, and the closing of small hospitals have been problems identified in many rural areas. Some research work has been undertaken and a few techniques have been developed to remotely measure the physiological condition of pregnant women through sophisticated ultrasound equipment. There are numerous ways to reduce maternal deaths, and an important step is to select the right approaches to achieving this reduction. One such approach is the provision of decision support systems in rural and remote areas. Decision support systems (DSSs) have already shown a great potential in many health fields. This thesis proposes an ingenious decision support system (iDSS) based on the methodology of survey instruments and identification of significant variables to be used in iDSS using statistical analysis. A survey was undertaken with pregnant women and factorial experimental design was chosen to acquire sample size. Variables with good reliability in any one of the statistical techniques such as Chi-square, Cronbach’s á and Classification Tree were incorporated in the iDSS. The decision support system was developed with significant variables such as: Place of residence, Seeing the same doctor, Education, Tetanus injection, Baby weight, Previous baby born, Place of birth, Assisted delivery, Pregnancy parity, Doctor visits and Occupation. The ingenious decision support system was implemented with Visual Basic as front end and Microsoft SQL server management as backend. Outcomes of the ingenious decision support system include advice on Symptoms, Diet and Exercise to pregnant women. On conditional system was sent and validated by the gynaecologist. Another outcome of ingenious decision support system was to provide better pregnancy health awareness and reduce long distance travel, especially for women in rural areas. The proposed system has qualities such as usefulness, accuracy and accessibility.
Resumo:
Acoustic emission (AE) is the phenomenon where stress waves are generated due to rapid release of energy within a material caused by sources such as crack initiation or growth. AE technique involves recording the stress waves by means of sensors and subsequent analysis of the recorded signals to gather information about the nature of the source. Though AE technique is one of the popular non destructive evaluation (NDE) techniques for structural health monitoring of mechanical, aerospace and civil structures; several challenges still exist in successful application of this technique. Presence of spurious noise signals can mask genuine damage‐related AE signals; hence a major challenge identified is finding ways to discriminate signals from different sources. Analysis of parameters of recorded AE signals, comparison of amplitudes of AE wave modes and investigation of uniqueness of recorded AE signals have been mentioned as possible criteria for source differentiation. This paper reviews common approaches currently in use for source discrimination, particularly focusing on structural health monitoring of civil engineering structural components such as beams; and further investigates the applications of some of these methods by analyzing AE data from laboratory tests.
Resumo:
Columns and walls in buildings are subjected to a number of load increments during the construction and service stages. The combination of these load increments and poor quality construction can cause defects in these structural components. In addition, defects can also occur due to accidental or deliberate actions by users of the building during construction and service stages. Such defects should be detected early so that remedial measures can be taken to improve life time serviceability and performance of the building. This paper uses micro and macro model upgrading methods during construction and service stages of a building based on the mass and stiffness changes to develop a comprehensive procedure for locating and detecting defects in columns and walls of buildings. Capabilities of the procedure are illustrated through examples.
Resumo:
The modern structural diagnosis process is rely on vibration characteristics to assess safer serviceability level of the structure. This paper examines the potential of change in flexibility method to use in damage detection process and two main practical constraints associated with it. The first constraint addressed in this paper is reduction in number of data acquisition points due to limited number of sensors. Results conclude that accuracy of the change in flexibility method is influenced by the number of data acquisition points/sensor locations in real structures. Secondly, the effect of higher modes on damage detection process has been studied. This addresses the difficulty of extracting higher order modal data with available sensors. Four damage indices have been presented to identify their potential of damage detection with respect to different locations and severity of damage. A simply supported beam with two degrees of freedom at each node is considered only for a single damage cases throughout the paper.
Resumo:
Visual sea-floor mapping is a rapidly growing application for Autonomous Underwater Vehicles (AUVs). AUVs are well-suited to the task as they remove humans from a potentially dangerous environment, can reach depths human divers cannot, and are capable of long-term operation in adverse conditions. The output of sea-floor maps generated by AUVs has a number of applications in scientific monitoring: from classifying coral in high biological value sites to surveying sea sponges to evaluate marine environment health.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
Australia requires decisive action on climate change and issues of sustainability. The Urban Informatics Research Lab has been funded by the Queensland State Government to conduct a three year study (2009 – 2011) exploring ways to support Queensland residents in making more sustainable consumer and lifestyle choices. We conduct user-centred design research that inform the development of real-time, mobile, locational, networked information interfaces, feedback mechanisms and persuasive and motivational approaches that in turn assist in-situ decision making and environmental awareness in everyday settings. The study aims to deliver usable and useful prototypes offering individual and collective visualisations of ecological impact and opportunities for engagement and collaboration in order to foster a participatory and sustainable culture of life in Australia. Raising people’s awareness with environmental data and educational information does not necessarily trigger sufficient motivation to change their habits towards a more environmentally friendly and sustainable lifestyle. Our research seeks to develop a better understanding how to go beyond just informing and into motivating and encouraging action and change. Drawing on participatory culture, ubiquitous computing, and real-time information, the study delivers research that leads to viable new design approaches and information interfaces which will strengthen Australia’s position to meet the targets of the Clean Energy Future strategy, and contribute to the sustainability of a low-carbon future in Australia. As part of this program of research, the Urban Informatics Research Lab has been invited to partner with GV Community Energy Pty Ltd on a project funded by the Victorian Government Sustainability Fund. This feasibility report specifically looks at the challenges and opportunities of energy monitoring in households in Victoria that include a PV solar installation. The report is structured into two parts: In Part 1, we first review a range of energy monitoring solutions, both stand-alone and internet-enabled. This section primarily focusses on the technical capacilities. However, in order to understand this information and make an informed decision, it is crucial to understand the basic principles and limitations of energy monitoring as well as the opportunities and challenges of a networked approach towards energy monitoring which are discussed in Section 2.
Resumo:
The health effects of environmental hazards are often examined using time series of the association between a daily response variable (e.g., death) and a daily level of exposure (e.g., temperature). Exposures are usually the average from a network of stations. This gives each station equal importance, and negates the opportunity for some stations to be better measures of exposure. We used a Bayesian hierarchical model that weighted stations using random variables between zero and one. We compared the weighted estimates to the standard model using data on health outcomes (deaths and hospital admissions) and exposures (air pollution and temperature) in Brisbane, Australia. The improvements in model fit were relatively small, and the estimated health effects of pollution were similar using either the standard or weighted estimates. Spatial weighted exposures would be probably more worthwhile when there is either greater spatial detail in the health outcome, or a greater spatial variation in exposure.
Resumo:
While the emission rate of ultrafine particles has been measured and quantified, there is very little information on the emission rates of ions and charged particles from laser printers. This paper describes a methodology that can be adopted for measuring the surface charge density on printed paper and the ion and charged particle emissions during operation of a high-emitting laser printer and shows how emission rates of ultrafine particles, ions and charged particles may be quantified using a controlled experiment within a closed chamber.
Resumo:
Dengue virus is the most significant human viral pathogen spread by the bite of an infected mosquito. With no vaccine or antiviral therapy currently available, disease prevention relies largely on surveillance and mosquito control. Preventing the onset of dengue outbreaks and effective vector management would be considerably enhanced through surveillance of dengue virus prevalence in natural mosquito populations. However, current approaches to the identification of virus in field-caught mosquitoes require relatively slow and labor intensive techniques such as virus isolation or RT-PCR involving specialized facilities and personnel. A rapid and portable method for detecting dengue virus-infected mosquitoes is described. Using a hand held battery operated homogenizer and a dengue diagnostic rapid strip the viral protein NS1 was detected as a marker of dengue virus infection. This method could be performed in less than 30 min in the field, requiring no downstream processing, and is able to detect a single infected mosquito in a pool of at least 50 uninfected mosquitoes. The method described in this study allows rapid, real-time monitoring of dengue virus presence in mosquito populations and could be a useful addition to effective monitoring and vector control responses.