253 resultados para Ball-bearings
Resumo:
Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (approx 400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multi-player nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.
Resumo:
The use of gyro-dynamic forces to counteract the wave-induced roll motion of marine vessels in a seaway was proposed over 100 years ago. These early systems showed a remarkable performance, reporting roll reductions of up to 95% in some sailing conditions. Despite this success, further developments were not pursued since the systems were unable to provide acceptable performance over an extended envelope of sailing and environmental conditions, and the invention of fin roll stabilisers provided a satisfactory alternative. This has been attributed to simplistic controls, heavy drive systems, and large structural mass required to withstand the loads given the low strength materials available at the time. Today, advances in material strength, bearings, motor technology and mechanical design methods, together with powerful signal processing algorithms, has resulted in a revitalized interest in gyro-stabilisers for ships. Advanced control systems have enabled optimisation of restoring torques across a range of wave environments and sailing conditions through adaptive control system design. All of these improvements have resulted in increased spinning speed, lower mass, and dramatically increased stabilising performance. This brief paper provides an overview of recent developments in the design and control of gyro-stabilisers of ship roll motion. In particular, the novel Halcyon Gyro-Stabilisers are introduced, and their performance is illustrated based on a simulation case study for a naval patrol vessel. Given the growing national and global interest in small combatants and patrol vessels, modem gyro-stabilisers may offer a significant technological contribution to the age old problem of comfort and mission operability on small ships, especially at loiter speeds.
Resumo:
Bridge girder bearings rest on pedestals to transfer the loading safely to the pier headstock. In spite of the existence of industry guidelines, due to construction complexities, such guidelines are often overlooked. Further, there is paucity of research on the performance of pedestals, although their failure could cause exorbitant maintenance costs. Although reinforced concrete pedestals are recommended in the industry design guidelines, unreinforced concrete and/ or epoxy glue pedestals are provided due to construction issues; such pedestals fail within a very short period of service. With a view to understanding the response of pedestals subject to monotonic loading, a three-dimensional nonlinear explicit finite element micro-model of unreinforced and reinforced concrete pedestals has been developed. Contact and material nonlinearity have been accounted for in the model. It is shown that the unreinforced concrete pedestals suffer from localised edge stress singularities, the failure of which was comparable to those in the field. The reinforced concrete pedestals, on the other hand, distribute the loading without edge stress singularity, again conforming to the field experience.
Resumo:
The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, inhabiting a small number of distinct and isolated coastal regions of Queensland and the Northern Territory. An examination of the evolutionary history and contemporary influences shaping the genetic structure of this species is required to make informed conservation management decisions. Here, we report the first analysis undertaken on the phylogeography and population genetics of the water mouse across its mainland Australian distribution. Genetic diversity was assessed at two mitochondrial DNA (Cytochrome b, 1000 bp; D-loop, 400 bp) and eight microsatellite DNA loci. Very low genetic diversity was found, indicating that water mice underwent a recent expansion throughout their Australian range and constitute a single evolutionarily significant unit. Microsatellite analyses revealed that the highest genetic diversity was found in the Mackay region of central Queensland; population substructure was also identified, suggesting that local populations may be isolated in this region. Conversely, genetic diversity in the Coomera region of south-east Queensland was very low and the population in this region has experienced a significant genetic bottleneck. These results have significant implications for future management, particularly in terms of augmenting populations through translocations or reintroducing water mice in areas where they have gone extinct.
Resumo:
This paper describes the collaborative work practices of the Health and Wellbeing Node within the National Indigenous Research and Knowledges Network (NIRAKN). The authors reflect on the processes they used to research and develop a literature review. As a newly established research team, the Health and Wellbeing Node members developed a collaborative approach that was informed by Action Research practices and underpinned by Indigenous ways of working. The authors identify strong links between Action Research and Indigenous processes. They suggest that, through ongoing cycles of research and review, the NIRAKN Health and Wellbeing Node developed a culturally safe, respectful and trulycollaborative way of working together and forming the identity of their work group. In this paper, they describe their developing work processes and explain the way that pictorial conceptual models contributed to their emerging ideas.
Resumo:
This paper presents a new metric, which we call the lighting variance ratio, for quantifying descriptors in terms of their variance to illumination changes. In many applications it is desirable to have descriptors that are robust to changes in illumination, especially in outdoor environments. The lighting variance ratio is useful for comparing descriptors and determining if a descriptor is lighting invariant enough for a given environment. The metric is analysed across a number of datasets, cameras and descriptors. The results show that the upright SIFT descriptor is typically the most lighting invariant descriptor.
Resumo:
This paper describes a lightweight, modular and energy efficient robotic vehicle platform designed for broadacre agriculture - the Small Robotic Farm Vehicle (SRFV). The current trend in farming is towards increasingly large machines that optimise the individual farmer’s productivity. Instead, the SRFV is designed to promote the sustainable intensification of agriculture by allowing farmers to concentrate on more important farm management tasks. The robot has been designed with a user-centred approach which focuses the outcomes of the project on the needs of the key project stakeholders. In this way user and environmental considerations for broadacre farming have informed the vehicle platform configuration, locomotion, power requirements and chassis construction. The resultant design is a lightweight, modular four-wheeled differential steer vehicle incorporating custom twin in-hub electric drives with emergency brakes. The vehicle is designed for a balance between low soil impact, stability, energy efficiency and traction. The paper includes modelling of the robot’s dynamics during an emergency brake in order to determine the potential for tipping. The vehicle is powered by a selection of energy sources including rechargeable lithium batteries and petrol-electric generators.
Resumo:
Bearing faults are the most common cause of wind turbine failures. Unavailability and maintenance cost of wind turbines are becoming critically important, with their fast growing in electric networks. Early fault detection can reduce outage time and costs. This paper proposes Anomaly Detection (AD) machine learning algorithms for fault diagnosis of wind turbine bearings. The application of this method on a real data set was conducted and is presented in this paper. For validation and comparison purposes, a set of baseline results are produced using the popular one-class SVM methods to examine the ability of the proposed technique in detecting incipient faults.
Resumo:
This paper presents a framework for synchronising multiple triggered sensors with respect to a local clock using standard computing hardware. Providing sensor measurements with accurate and meaningful timestamps is important for many sensor fusion, state estimation and control applications. Accurately synchronising sensor timestamps can be performed with specialised hardware, however, performing sensor synchronisation using standard computing hardware and non-real-time operating systems is difficult due to inaccurate and temperature sensitive clocks, variable communication delays and operating system scheduling delays. Results show the ability of our framework to estimate time offsets to sub-millisecond accuracy. We also demonstrate how synchronising timestamps with our framework results in a tenfold reduction in image stabilisation error for a vehicle driving on rough terrain. The source code will be released as an open source tool for time synchronisation in ROS.
Resumo:
We consider online prediction problems where the loss between the prediction and the outcome is measured by the squared Euclidean distance and its generalization, the squared Mahalanobis distance. We derive the minimax solutions for the case where the prediction and action spaces are the simplex (this setup is sometimes called the Brier game) and the \ell_2 ball (this setup is related to Gaussian density estimation). We show that in both cases the value of each sub-game is a quadratic function of a simple statistic of the state, with coefficients that can be efficiently computed using an explicit recurrence relation. The resulting deterministic minimax strategy and randomized maximin strategy are linear functions of the statistic.