223 resultados para Bacterial artificial chromosome sequencing
Resumo:
Endometriosis is a complex disease involving multiple susceptibility genes and environmental factors. Our previous studies on endometriosis identified a region of significant linkage on chromosome 10q. Two biological candidate genes (CYP17A1 and IFIT1) located on chromosome 10q, have previously been implicated in endometriosis and/or uterine function. We hypothesized that variation in CYP17A1 and/or IFIT1 could contribute to the risk of endometriosis and may account for some of the linkage signal on chromosome 10q. We genotyped 17 single nucleotide polymorphisms (SNPs) in the CYP17A1 and IFIT1 genes including SNP rs743572 previously associated with endometriosis in 768 endometriosis cases and 768 unrelated controls. We found no evidence for association between endometriosis and individual SNPs or SNP haplotypes in CYP17A1 and IFIT1. Common variation in these genes does not appear to be a major contributor to endometriosis susceptibility in our Australian sample.
Resumo:
We carried out a genome-wide association study in 296 individuals with male-pattern baldness (androgenetic alopecia) and 347 controls. We then investigated the 30 best SNPs in an independent replication sample and found highly significant association for five SNPs on chromosome 20p11 (rs2180439 combined P = 2.7 x 10(-15)). No interaction was detected with the X-chromosomal androgen receptor locus, suggesting that the 20p11 locus has a role in a yet-to-be-identified androgen-independent pathway.
Resumo:
BACKGROUND: Endometriosis is a common disease with a heritable component. The collaborative International Endogene Study consists of two data sets (Oxford and Australia) comprising 1176 families with multiple affected. The aim was to investigate whether the apparent concentration of cases in a proportion of families could be explained by one or more rare variants with (near-)Mendelian autosomal inheritance. METHODS AND RESULTS: Linkage analyses (aimed at finding chromosomal regions harbouring disease-predisposing genes) were conducted in families with three or more affected (Oxford: n = 52; Australia: n = 196). In the Oxford data set, a non-parametric linkage score (Kong & Cox (K&C) Log of ODds (LOD)) of 3.52 was observed on chromosome 7p (genome-wide significance P = 0.011). A parametric MOD score (equal to maximum LOD maximized over 357 possible inheritance models) of 3.89 was found at 65.72 cM (D7S510) for a dominant model with reduced penetrance. After including the Australian data set, the non-parametric K&C LOD of the combined data set was 1.46 at 57.3 cM; the parametric analysis found an MOD score of 3.30 at D7S484 (empirical significance: P = 0.035) for a recessive model with high penetrance. Critical recombinant analysis narrowed the probable region of linkage down to overlapping 6.4 Mb and 11 Mb intervals containing 48 and 96 genes, respectively. CONCLUSIONS: This is the first report to suggest that there may be one or more high-penetrance susceptibility loci for endometriosis with (near-)Mendelian inheritance.
Resumo:
Endometriosis is a common gynecological disease that affects up to 10% of women in their reproductive years. It causes pelvic pain, severe dysmenorrhea, and subfertility. The disease is defined as the presence of tissue resembling endometrium in sites outside the uterus. Its cause remains uncertain despite >50 years of hypothesis-driven research, and thus the therapeutic options are limited. Disease predisposition is inherited as a complex genetic trait, which provides an alternative route to understanding the disease. We seek to identify susceptibility loci, using a positional-cloning approach that starts with linkage analysis to identify genomic regions likely to harbor these genes. We conducted a linkage study of 1,176 families (931 from an Australian group and 245 from a U.K. group), each with at least two members--mainly affected sister pairs--with surgically diagnosed disease. We have identified a region of significant linkage on chromosome 10q26 (maximum LOD score [MLS] of 3.09; genomewide P = .047) and another region of suggestive linkage on chromosome 20p13 (MLS = 2.09). Minor peaks (with MLS > 1.0) were found on chromosomes 2, 6, 7, 8, 12, 14, 15, and 17. This is the first report of linkage to a major locus for endometriosis. The findings will facilitate discovery of novel positional genetic variants that influence the risk of developing this debilitating disease. Greater understanding of the aberrant cellular and molecular mechanisms involved in the etiology and pathophysiology of endometriosis should lead to better diagnostic methods and targeted treatments.
Resumo:
Familial typical migraine is a common, complex disorder that shows strong familial aggregation. Using latent-class analysis (LCA), we identified subgroups of people with migraine/severe headache in a community sample of 12,245 Australian twins (60% female), drawn from two cohorts of individuals aged 23-90 years who completed an interview based on International Headache Society criteria. We report results from genomewide linkage analyses involving 756 twin families containing a total of 790 independent sib pairs (130 affected concordant, 324 discordant, and 336 unaffected concordant for LCA-derived migraine). Quantitative-trait linkage analysis produced evidence of significant linkage on chromosome 5q21 and suggestive linkage on chromosomes 8, 10, and 13. In addition, we replicated previously reported typical-migraine susceptibility loci on chromosomes 6p12.2-p21.1 and 1q21-q23, the latter being within 3 cM of the rare autosomal dominant familial hemiplegic migraine gene (ATP1A2), a finding which potentially implicates ATP1A2 in familial typical migraine for the first time. Linkage analyses of individual migraine symptoms for our six most interesting chromosomes provide tantalizing hints of the phenotypic and genetic complexity of migraine. Specifically, the chromosome 1 locus is most associated with phonophobia; the chromosome 5 peak is predominantly associated with pulsating headache; the chromosome 6 locus is associated with activity-prohibiting headache and photophobia; the chromosome 8 locus is associated with nausea/vomiting and moderate/severe headache; the chromosome 10 peak is most associated with phonophobia and photophobia; and the chromosome 13 peak is completely due to association with photophobia. These results will prove to be invaluable in the design and analysis of future linkage and linkage disequilibrium studies of migraine.
Resumo:
This article examines the development of a specific gendered discourse in the United States in the first half of the twentieth century that united key beliefs about feminine beauty, identity, and the domestic interior with particular electric lighting technologies and effects. Largely driven by the electrical industry’s marketing rhetoric, American women were encouraged to adopt electric lighting as a beauty aid and ally in a host of domestic tasks. Drawing evidence from a number of primary texts, including women’s magazines, lighting and electrical industry trade journals, manufacturer-generated marketing materials, and popular home decoration and beauty advice literature, this study shifts the focus away from lighting as a basic utility, demonstrating the ways in which modern electric illumination was culturally constructed as a desirable personal and environmental beautifier as well as a means of harmonizing the domestic interior.
Resumo:
This study presents a comprehensive mathematical formulation model for a short-term open-pit mine block sequencing problem, which considers nearly all relevant technical aspects in open-pit mining. The proposed model aims to obtain the optimum extraction sequences of the original-size (smallest) blocks over short time intervals and in the presence of real-life constraints, including precedence relationship, machine capacity, grade requirements, processing demands and stockpile management. A hybrid branch-and-bound and simulated annealing algorithm is developed to solve the problem. Computational experiments show that the proposed methodology is a promising way to provide quantitative recommendations for mine planning and scheduling engineers.
Resumo:
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
Resumo:
Recent advances in DNA sequencing have enabled mapping of genes for monogenic traits in families with small pedigrees and even in unrelated cases. We report the identification of disease-causing mutations in a rare, severe, skeletal dysplasia, studying a family of two healthy unrelated parents and two affected children using whole-exome sequencing. The two affected daughters have clinical and radiographic features suggestive of anauxetic dysplasia (OMIM 607095), a rare form of dwarfism caused by mutations of RMRP. However, mutations of RMRP were excluded in this family by direct sequencing. Our studies identified two novel compound heterozygous loss-of-function mutations in POP1, which encodes a core component of the RNase mitochondrial RNA processing (RNase MRP) complex that directly interacts with the RMRP RNA domains that are affected in anauxetic dysplasia. We demonstrate that these mutations impair the integrity and activity of this complex and that they impair cell proliferation, providing likely molecular and cellular mechanisms by which POP1 mutations cause this severe skeletal dysplasia. © 2011 Glazov et al.
Resumo:
The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF = 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
Resumo:
Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilised Next Generation Sequencing (NGS) to screen the coding sequence, exon-intron boundaries and UTRs of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which 9 were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening.
Resumo:
In the first half of the twentieth century the dematerializing of boundaries between enclosure and exposure problematized traditional acts of “occupation” and understandings of the domestic environment. As a space of escalating technological control, the modern domestic interior offered new potential to re-define the meaning and means of habitation. This shift is clearly expressed in the transformation of electric lighting technology and applications for the modern interior in the mid-twentieth century. Addressing these issues, this paper examines the critical role of electric lighting in regulating and framing both the public and private occupation of Philip Johnson’s New Canaan estate. Exploring the dialectically paired transparent Glass House and opaque Guest House (both 1949), this study illustrates how Johnson employed artificial light to control the visual environment of the estate as well as to aestheticize the performance of domestic space. Looking closely at the use of artificial light to create emotive effects as well as to intensify the experience of occupation, this revisiting of the iconic Glass House and lesser-known Guest House provides a more complex understanding of Johnson’s work and the means with which he inhabited his own architecture. Calling attention to the importance of Johnson serving as both architect and client, and his particular interest in exploring the new potential of architectural lighting in this period, this paper investigates Johnson’s use of electric light to support architectural narratives, maintain visual order and control, and to suit the nuanced desires of domestic occupation.