564 resultados para 091399 Mechanical Engineering not elsewhere classified
Resumo:
A multi-objective design optimization study has been conducted for upstream fuel injection through porous media applied to the first ramp of a two-dimensional scramjet intake. The optimization has been performed by coupling evolutionary algorithms assisted by surrogate modeling and computational fluid dynamics with respect to three design criteria, that is, the maximization of the absolute mixing quantity, total pressure saving, and fuel penetration. A distinct Pareto optimal front has been obtained, highlighting the counteracting behavior of the total pressure against the mixing efficiency and fuel penetration. The injector location and size have been identified as the key design parameters as a result of a sensitivity analysis, with negligible influence of the porous properties in the configurations and conditions considered in the present study. Flowfield visualization has revealed the underlying physics associated with the effects of these dominant parameters on the shock structure and intensity.
Resumo:
This paper offers an uncertainty quantification (UQ) study applied to the performance analysis of the ERCOFTAC conical diffuser. A deterministic CFD solver is coupled with a non-statistical generalised Polynomial Chaos(gPC)representation based on a pseudo-spectral projection method. Such approach has the advantage to not require any modification of the CFD code for the propagation of random disturbances in the aerodynamic field. The stochactic results highlihgt the importance of the inlet velocity uncertainties on the pressure recovery both alone and when coupled with a second uncertain variable. From a theoretical point of view, we investigate the possibility to build our gPC representation on arbitray grid, thus increasing the flexibility of the stochastic framework.
Resumo:
Hybrid powerplants combining internal combustion engines and electric motor prime movers have been extensively developed for land- and marine-based transport systems. The use of such powerplants in airborne applications has been historically impractical due to energy and power density constraints. Improvements in battery and electric motor technology make aircraft hybrid powerplants feasible. This paper presents a technique for determining the feasibility and mechanical effectiveness of powerplant hybridisation. In this work, a prototype aircraft hybrid powerplant was designed, constructed and tested. It is shown that an additional 35% power can be supplied from the hybrid system with an overall weight penalty of 5%, for a given unmanned aerial system. A flight dynamic model was developed using the AeroSim Blockset in MATLAB Simulink. The results have shown that climb rates can be improved by 56% and endurance increased by 13% when using the hybrid powerplant concept.
Resumo:
Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.
Resumo:
Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.
Co-optimisation of indoor environmental quality and energy consumption within urban office buildings
Resumo:
This study aimed to develop a multi-component model that can be used to maximise indoor environmental quality inside mechanically ventilated office buildings, while minimising energy usage. The integrated model, which was developed and validated from fieldwork data, was employed to assess the potential improvement of indoor air quality and energy saving under different ventilation conditions in typical air-conditioned office buildings in the subtropical city of Brisbane, Australia. When operating the ventilation system under predicted optimal conditions of indoor environmental quality and energy conservation and using outdoor air filtration, average indoor particle number (PN) concentration decreased by as much as 77%, while indoor CO2 concentration and energy consumption were not significantly different compared to the normal summer time operating conditions. Benefits of operating the system with this algorithm were most pronounced during the Brisbane’s mild winter. In terms of indoor air quality, average indoor PN and CO2 concentrations decreased by 48% and 24%, respectively, while potential energy savings due to free cooling went as high as 108% of the normal winter time operating conditions. The application of such a model to the operation of ventilation systems can help to significantly improve indoor air quality and energy conservation in air-conditioned office buildings.
Resumo:
Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children’s exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools.
Resumo:
Currently, there is a limited understanding of the sources of ambient fine particles that contribute to the exposure of children at urban schools. Since the size and chemical composition of airborne particle are key parameters for determining the source as well as toxicity, PM1 particles (mass concentration of particles with an aerodynamic diameter less than 1 µm) were collected at 24 urban schools in Brisbane, Australia and their elemental composition determined. Based on the elemental composition four main sources were identified; secondary sulphates, biomass burning, vehicle and industrial emissions. The largest contributing source was industrial emissions and this was considered as the main source of trace elements in the PM1 that children were exposed to at school. PM1 concentrations at the schools were compared to the elemental composition of the PM2.5 particles (mass concentration of particles with an aerodynamic diameter less than 2.5 µm) from a previous study conducted at a suburban and roadside site in Brisbane. This comparison revealed that the more toxic heavy metals (V, Cr, Ni, Cu, Zn and Pb), mostly from vehicle and industrial emissions, were predominantly in the PM1 fraction. Thus, the results from this study points to PM1 as a potentially better particle size fraction for investigating the health effects of airborne particles.
Resumo:
We show that the cluster ion concentration (CIC) in the atmosphere is significantly suppressed during events that involve rapid increases in particle number concentration (PNC). Using a neutral cluster and air ion spectrometer, we investigated changes in CIC during three types of particle enhancement processes – new particle formation, a bushfire episode and an intense pyrotechnic display. In all three cases, the total CIC decreased with increasing PNC, with the rate of decrease being greater for negative CIC than positive. We attribute this to the greater mobility, and hence the higher attachment coefficient, of negative ions over positive ions in the air. During the pyrotechnic display, the rapid increase in PNC was sufficient to reduce the CIC of both polarities to zero. At the height of the display, the negative CIC stayed at zero for a full 10 min. Although the PNCs were not significantly different, the CIC during new particle formation did not decrease as much as during the bushfire episode and the pyrotechnic display. We suggest that the rate of increase of PNC, together with particle size, also play important roles in suppressing CIC in the atmosphere.
Resumo:
Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Resumo:
Elevated levels of fungi in indoor environments have been linked with mould/moisture damage in building structures. However, there is a lack of information about “normal” concentrations and flora as well as guidelines of viable fungi in the school environment in different climatic conditions. We have reviewed existing guidelines for indoor fungi and the current knowledge of the concentrations and flora of viable fungi in different climatic areas, the impact of the local factors on concentrations and flora of viable fungi in school environments. Meta-regression was performed to estimate the average behaviour for each analysis of interest, showing wide variation in the mean concentrations in outdoor and indoor school environments (range: 101-103 cfu/m3). These concentrations were significantly higher for both outdoors and indoors in the moderate than in the continental climatic area, showing that the climatic condition was a determinant for the concentrations of airborne viable fungi. The most common fungal species both in the moderate and continental area were Cladosporium spp. and Penicillium spp. The suggested few quantitative guidelines for indoor air viable fungi for school buildings are much lower than for residential areas. This review provides a synthesis, which can be used to guide the interpretation of the fungi measurements results and help to find indications of mould/moisture in school building structures.
Resumo:
There is considerable scientific interest in personal exposure to ultrafine particles. Owing to their small size, these particles are able to penetrate deep into the lungs, where they may cause adverse respiratory, pulmonary and cardiovascular health effects. This article presents Bayesian hierarchical models for estimating and comparing inhaled particle surface area in the lung.
Resumo:
Background An increase in bicycle commuting participation may improve public health and traffic congestion in cities. Information on air pollution exposure (such as perception, symptoms and risk management) contributes to the responsible promotion of bicycle commuting participation. Methods To determine perceptions, symptoms and willingness for specific exposure risk management strategies of exposure to air pollution, a questionnaire-based cross-sectional investigation was conducted with adult bicycle commuters (n = 153; age = 41 ± 11 yr; 28% female). Results Frequency of acute respiratory signs and symptoms are positively-associated with in- and post-commute compared to pre-commute time periods (p < 0.05); greater positive-association is with respiratory disorder compared to healthy, and female compared to male, participants. The perception (although not signs or symptoms) of in-commute exposure to air pollution is positive-associated with the estimated level of in-commute proximity to motorised traffic. The majority of participants indicated a willingness (which varied with health status and gender) to adopt risk management strategies (with certain practical features) if shown to be appropriate and effective. Conclusions While acute signs and symptoms of air pollution exposure are indicated with bicycle commuting, and more so in susceptible individuals, there is willingness to manage exposure risk by adopting effective strategies with desirable features.
Resumo:
The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemistry of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition and PNSD, respectively. Five NPF events, with growth rates in the range 3.3-4.6 nm, were detected at two sites. The NPF events happened on relatively warmer days with lower humidity and higher solar radiation. Temporal percent fractions of nitrate, sulphate, ammonium and organics were modelled using the Generalised Additive Model (GAM), with a basis of penalised spline. Percent fractions of organics increased after the NPF events, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs f43 trends were compared between nucleation and non-nucleation days. f44 vs f43 followed a different pattern on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs f43 plot and this finding can be used as a tool for source apportionment of measured particles.
Resumo:
Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.