222 resultados para soft-commutation technique
Resumo:
Despite the extent of works done on modelling port water collisions, not much research effort has been devoted to modelling collisions at port anchorages. This paper aims to fill this important gap in literature by applying the Navigation Traffic Conflict Technique (NTCT) for measuring the collision potentials in anchorages and for examining the factors contributing to collisions. Grounding on the principles of the NTCT, a collision potential measurement model and a collision potential prediction model were developed. These models were illustrated by using vessel movement data of the anchorages in Singapore port waters. Results showed that the measured collision potentials are in close agreement with those perceived by harbour pilots. Higher collision potentials were found in anchorages attached to shoreline and international fairways, but not at those attached to confined water. Higher operating speeds, larger numbers of isolated danger marks and day conditions were associated with reduction in the collision potentials.
Resumo:
As conservatoire-style dance teaching has traditionally utilised a hierarchical approach through which the student must conform to the ideal requirements of the conventional technique, current discourse is beginning to question how dance training can develop technical acuity without stifling students' ability to engage creatively. In recent years, there has been growing interest in the field of somatics and its relationship to tertiary dance training due to the understanding that this approach supports creative autonomy by radically repositioning the student's relationship to embodied learning, skill acquisition, enquiry and performance. This research addresses an observable disjuncture between the skills of dancers graduating from tertiary training and Australian dance industry needs, which increasingly demand the co-creative input of the dancer in choreographic practice. Drawing from Action Research, this paper will discuss a project which introduces somatic learning approaches, primarily from Feldenkrais Method and Hanna Somatics, to first-year dance students in their transition into tertiary education. This paper acknowledges previous research undertaken, most specifically the Somdance Manual by the University of Western Sydney, while directing focus to the first-year student transition from private dance studio training into the pre-professional arena.
Resumo:
Skin temperature is an important physiological measure that can reflect the presence of illness and injury as well as provide insight into the localised interactions between the body and the environment. The aim of this systematic review was to analyse the agreement between conductive and infrared means of assessing skin temperature which are commonly employed in in clinical, occupational, sports medicine, public health and research settings. Full-text eligibility was determined independently by two reviewers. Studies meeting the following criteria were included in the review: 1) the literature was written in English, 2) participants were human (in vivo), 3) skin surface temperature was assessed at the same site, 4) with at least two commercially available devices employed—one conductive and one infrared—and 5) had skin temperature data reported in the study. A computerised search of four electronic databases, using a combination of 21 keywords, and citation tracking was performed in January 2015. A total of 8,602 were returned. Methodology quality was assessed by 2 authors independently, using the Cochrane risk of bias tool. A total of 16 articles (n = 245) met the inclusion criteria. Devices are classified to be in agreement if they met the clinically meaningful recommendations of mean differences within ±0.5 °C and limits of agreement of ±1.0 °C. Twelve of the included studies found mean differences greater than ±0.5 °C between conductive and infrared devices. In the presence of external stimulus (e.g. exercise and/or heat) five studies foundexacerbated measurement differences between conductive and infrared devices. This is the first review that has attempted to investigate presence of any systemic bias between infrared and conductive measures by collectively evaluating the current evidence base. There was also a consistently high risk of bias across the studies, in terms of sample size, random sequence generation, allocation concealment, blinding and incomplete outcome data. This systematic review questions the suitability of using infrared cameras in stable, resting, laboratory conditions. Furthermore, both infrared cameras and thermometers in the presence of sweat and environmental heat demonstrate poor agreement when compared to conductive devices. These findings have implications for clinical, occupational, public health, sports science and research fields.
Resumo:
The co-curing process for advanced grid-stiffened (AGS) composite structure is a promising manufacturing process, which could reduce the manufacturing cost, augment the advantages and improve the performance of AGS composite structure. An improved method named soft-mold aided co-curing process which replaces the expansion molds by a whole rubber mold is adopted in this paper. This co-curing process is capable to co-cure a typical AGS composite structure with the manufacturer’s recommended cure cycle (MRCC). Numerical models are developed to evaluate the variation of temperature and the degree of cure in AGS composite structure during the soft-mold aided co-curing process. The simulation results were validated by experimental results obtained from embedded temperature sensors. Based on the validated modeling framework, the cycle of cure can be optimized by reducing more than half the time of MRCC while obtaining a reliable degree of cure. The shape and size effects of AGS composite structure on the distribution of temperature and degree of cure are also investigated to provide insights for the optimization of soft-mold aided co-curing process.
Resumo:
An innovative cement-based soft-hard-soft (SHS) multi-layer composite has been developed for protective infrastructures. Such composite consists of three layers including asphalt concrete (AC), high strength concrete (HSC), and engineered cementitious composites (ECC). A three dimensional benchmark numerical model for this SHS composite as pavement under blast load was established using LSDYNA and validated by field blast test. Parametric studies were carried out to investigate the influence of a few key parameters including thickness and strength of HSC and ECC layers, interface properties, soil conditions on the blast resistance of the composite. The outcomes of this study also enabled the establishment of a damage pattern chart for protective pavement design and rapid repair after blast load. Efficient methods to further improve the blast resistance of the SHS multi-layer pavement system were also recommended.
Resumo:
This article investigates the role of “soft architecture” and interior effects—including window treatments, textiles, and electric lighting—in the physcial and social construction of the postwar domestic environment in the USA. In this period the American home became an increasingly visual and visible space, defined more by the view out and the view in than by traditional conditions of domestic enclosure. Popular how-to columns and home decoration articles offered homemakers a variety of mechanisms for sustaining the appearance and psychological comfort of the modern domestic setting. Examining a range of popular decorative strategies used to mediate residential picture windows and window walls, this study challenges the deep-seated cultural and disciplinary biases associated with both the design and study of domestic architecture and interiors. Drawing upon historical documents and contemporary theorizations of the interior, this paper argues for the agency of “soft architecture” in the domestication of modern residential architecture.
Resumo:
INTRODUCTION Cadaveric studies have previously documented typical patterns of venous drainage within vertebral bodies (VBs) [1,2,3], comprised primarily of the basivertebral vein, a planar tree like structure at the mid-height of the VB. These studies, however, are limited in the number of samples available, and so have not examined any potential differences in this anatomy in conditions such as scoliosis. MRI is able to create 3D images of soft tissue structures in the spine, including the basivertebral vein without the use of contrast. As a non-invasive imaging technique this opens up the possibility of examining the venous network in multiple VBs within the same subject, in healthy controls as well as in subjects with abnormal anatomy such as adolescent idiopathic scoliosis (AIS). CONCLUSIONS High resolution MRI scans allow in vivo quantification of the vertebral venous system at multiple levels on healthy and scoliotic populations for the first time. The length of the basivertebral vein was seen to have a significant bias to the right hand side of the VB in both healthy and AIS adolescents. The spatial pattern of this vein showed large variations in branching both within and across individuals.
Resumo:
Law is narration: it is narrative, narrator and the narrated. As a narrative, the law is constituted by a constellation of texts – from official sources such as statutes, treaties and cases, to private arrangements such as commercial contracts, deeds and parenting plans. All are a collection of stories: cases are narrative contests of facts and rights; statutes are recitations of the substantive and procedural bases for social, economic and political interactions; private agreements are plots for future relationships, whether personal or professional. As a narrator, law speaks in the language of modern liberalism. It describes its world in abstractions rather than in concrete experience, universal principles rather than individual subjectivity. It casts people into ‘parties’ to legal relationships; structures human interactions into ‘issues’ or ‘problems’; and tells individual stories within larger narrative arcs such as ‘the rule of law’ and ‘the interests of justice’. As the narrated, the law is a character in its own story. The scholarship of law, for example, is a type of story-telling with law as its central character. For positivists, still the dominant group in the legal genre, law is a closed system of formal rules with an “immanent rationality” and its own “structure, substantive content, procedure and tradition,” dedicated to finality of judgment. For scholars inspired by the interpretative tradition in the humanities, law is a more ambivalent character, susceptible to influences from outside its realm and masking a hidden ideological agenda under its cloak of universality and neutrality. For social scientists, law is a protagonist on a wider social stage, impacting on society, the economy and the polity is often surprising ways.
Resumo:
Living cells are the functional unit of organs that controls reactions to their exterior. However, the mechanics of living cells can be difficult to characterize due to the crypticity of their microscale structures and associated dynamic cellular processes. Fortunately, multiscale modelling provides a powerful simulation tool that can be used to study the mechanical properties of these soft hierarchical, biological systems. This paper reviews recent developments in hierarchical multiscale modeling technique that aimed at understanding cytoskeleton mechanics. Discussions are expanded with respects to cytoskeletal components including: intermediate filaments, microtubules and microfilament networks. The mechanical performance of difference cytoskeleton components are discussed with respect to their structural and material properties. Explicit granular simulation methods are adopted with different coarse-grained strategies for these cytoskeleton components and the simulation details are introduced in this review.
Resumo:
This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element software LS-DYNA agrees closely with the experimental data. Both the numerical and field blast test indicated that the SHS composite exhibited high resistance against blast loading.
Resumo:
A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.
Resumo:
Aims: To establish a model to measure bidirectional flow of water from a glucose oral rehydration solution (G-ORS) and a newly developed rice-based oral rehydration solution (R-ORS) using a dual isotope tracer technique in a rat perfusion model. To measure net water, sodium and potassium absorption from the ORS. Methods: In viva steady-state perfusion studies were carried out in normal and secreting (induced by cholera toxin) rat small intestine (n = 11 in each group). To determine bidirectional flow of water from the ORS the animals were initially labelled with tritium, and deuterium was added to the perfusion solution. Sequential perfusate and blood samples were collected after attainment of steady-state conditions and analysed for water and electrolyte content. Results: There was a significant increase in net water absorption from the R-ORS compared to the G-ORS in both the normal (P < 0.02) and secreting intestine (P < 0.05). Water efflux was significantly reduced in the R-ORS group compared to the G-ORS group in both the normal (P < 0.01) and the secreting intestine (P < 0.01). There was an increase in sodium absorption in the R-ORS group compared to the G-ORS. The G-ORS produced a significantly greater blood glucose level at 75 min compared to the R-ORS (P < 0.03) in the secreting intestine. Conclusions: This study demonstrates the improved water absorption from a rice-based ORS in both the normal and secreting intestine. Evidence that the absorption of water may be influenced by the osmolality of the ORS was also demonstrated.
Resumo:
Purpose To investigate if the accuracy of intraocular pressure (IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) contact lenses (CL) is affected by the positive power of the CLs. Methods The experimental group comprised 26 subjects, (8 male, 18 female). IOP measurements were undertaken on the subjects’ right eyes in random order using a Rebound Tonometer (ICare). The CLs had powers of +2.00D and +6.00D. Measurements were taken over each contact lens and also before and after the CLs had been worn. Results The IOP measure obtained with both CLs was significantly lower compared to the value without CLs (t test; p<0.001) but no significant difference was found between the two powers of CLs. Conclusions Rebound tonometry over positive hydrogel CLs leads to a certain degree of IOP underestimation. This result didn’t change for the two positive lenses used in the experiment, despite their large difference in power and therefore in lens thickness. Optometrists should bear this in mind when measuring IOP with the rebound tonometer over plus power contact lenses.
Resumo:
A new technique called the reef resource inventory (RRI) was developed to map the distribution and abundance of benthos and substratum on reefs. The rapid field sampling technique uses divers to visually estimate the percentage cover of categories of benthos and substratum along 2x20 in plotless strip-transects positioned randomly over the tops, and systematically along the edge of reefs. The purpose of this study was to compare the relative sampling accuracy of the RRI against the line intercept transect technique (LIT), an international standard for sampling reef benthos and substratum. Analysis of paired sampling with LIT and RRI at 51 sites indicated sampling accuracy was not different (P > 0.05) for 8 of the 12 benthos and substratum categories used in the study. Significant differences were attributed to small-scale patchiness and cryptic coloration of some benthos; effects associated with sampling a sparsely distributed animal along a line versus an area; difficulties in discriminating some of the benthos and substratum categories; and differences due to visual acuity since LIT measurements were taken by divers close to the seabed whereas RRI measurements were taken by divers higher in the water column. The relative cost efficiency of the RRI technique was at least three times that of LIT for all benthos and substratum categories and as much as 10 times higher for two categories. These results suggest that the RRI can be used to obtain reliable and accurate estimates of relative abundance of broad categories of reef benthos and substratum.