346 resultados para resistance mechanism
Resumo:
Purpose The purpose of this paper is to determine whether greenhouse gas (GHG) tradeable instruments will be classified as financial products within the scope of the World Trade Organization (WTO) law and to explore the implications of this finding. Design/methodology/approach This purpose is achieved through examination of the units of the Australian Carbon Pricing Mechanism (CPM), namely eligible emissions units. These units are analysed through the lens of the definition of financial products provided in the General Agreement for Trade in Services (the GATS). Findings This paper finds that eligible emissions units will be classified as financial instruments, and therefore the provisions that govern their trade will be regulated by the GATS. Considering this, this paper explores the limitations that are introduced by the Australian legislation on the trade of eligible emissions units. Research limitations/implications This paper is limited in its analysis to the Australian CPM. In order to draw conclusions on the issues raised by this analysis it is necessary to consider the WTO requirements against an operating emissions trading scheme. The Australian CPM presents a contemporary model of an appropriate scheme. Originality/value The findings in this paper are crucial in a GHG constrained society. This is because emissions trading schemes are becoming popular measures for pricing GHG emissions, and for this reason the units that are traded and surrendered for emissions liabilities must be classified appropriately on a global scale. Failing to do this could result in differential treatment that may be contrary to the intentions of important global agreements, such as the WTO covered agreements.
Resumo:
Cisplatin is one of the most potent anticancer agents, displaying significant clinical activity against a variety of solid tumours. To date, cisplatin-based combination treatment remains the most effective systemic chemotherapy for non-small cell lung cancer (NSCLC) patients. Unfortunately, the outcome of cisplatin therapy in NSCLC has reached a plateau due to the development of both intrinsic and acquired resistance that have become a major obstacle in the use of cisplatin in the clinical setting. The molecular mechanisms that underlie chemoresistance are largely unknown. Mechanisms of acquired resistance to cisplatin include reduced intracellular accumulation of the drug, enhanced drug inactivation by metallothionine and glutathione, increased repair activity of DNA damage, and altered expression of oncogenes and regulatory proteins. Cisplatin-induced cytotoxicity is mediated through the induction of apoptosis and cell cycle arrest as a result of cisplatin-DNA adduct formation, which in turn, activates multiple signaling pathways and mediators. These include p53, Bcl-2 family, caspases, cyclins, CDKs, MAPK and PI3K/Akt. Increased expression of anti-apoptotic genes and mutations in the intrinsic apoptotic pathway may also contribute to the inability of cells to detect DNA damage or to induce apoptosis. This chapter will provide an insight into the mechanisms involved in cisplatin resistance and a better understanding of the molecular basis of the cellular response to cisplatin-based chemotherapy in lung cancer.
Resumo:
Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.
Resumo:
Synaptic changes at sensory inputs to the dorsal nucleus of the lateral amygdala (LAd) play a key role in the acquisition and storage of associative fear memory. However, neither the temporal nor spatial architecture of the LAd network response to sensory signals is understood. We developed a method for the elucidation of network behavior. Using this approach, temporally patterned polysynaptic recurrent network responses were found in LAd (intra-LA), both in vitro and in vivo, in response to activation of thalamic sensory afferents. Potentiation of thalamic afferents resulted in a depression of intra-LA synaptic activity, indicating a homeostatic response to changes in synaptic strength within the LAd network. Additionally, the latencies of thalamic afferent triggered recurrent network activity within the LAd overlap with known later occurring cortical afferent latencies. Thus, this recurrent network may facilitate temporal coincidence of sensory afferents within LAd during associative learning.
Resumo:
The article discusses the issues of resistance; that is resistance by prisoners to the various manifestations of power operating in high security prisons, as well as that of attempted shifts in the regime from physical to psychological control. Other topics highlighted include legitimacy and 'official discourse', mourning and the construction of 'ungrievable lives' and the importance of finding a way out of the cycle of violence, which high security regimes perpetuate.
Resumo:
This chapter focuses on ‘intergenerational collaborative drawing’, a particular process of drawing whereby adults and children draw at the same time on a blank paper space. Such drawings can be produced for a range of purposes, and based on different curriculum or stimulus subjects. Children of all ages, and with a range of physical and intellectual abilities are able to draw with parents, carers and teachers. Intergenerational collaborative drawing is a highly potent method for drawing in early childhood contexts because it brings adults and children together in the process of thinking and theorizing in order to create visual imagery and this exposes in deep ways to adults and children, the ideas and concepts being learned about. For adults, this exposure to a child’s thinking is a far more effective assessment tool than when they are presented with a finished drawing they know little about. This chapter focuses on drawings to examine wider issues of learning independence and how in drawing, preferred schema in the form of hand-out worksheets, the suggestive drawings provided by adults, and visual material seen in everyday life all serve to co-opt a young child into making particular schematic choices. I suggest that intergenerational collaborative drawing therefore serves to work as a small act of resistance to that co-opting, in that it helps adults and children to collectively challenge popular creativity and learning discourses.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.
Resumo:
We examine the security of the 64-bit lightweight block cipher PRESENT-80 against related-key differential attacks. With a computer search we are able to prove that for any related-key differential characteristic on full-round PRESENT-80, the probability of the characteristic only in the 64-bit state is not higher than 2−64. To overcome the exponential (in the state and key sizes) computational complexity of the search we use truncated differences, however as the key schedule is not nibble oriented, we switch to actual differences and apply early abort techniques to prune the tree-based search. With a new method called extended split approach we are able to make the whole search feasible and we implement and run it in real time. Our approach targets the PRESENT-80 cipher however,with small modifications can be reused for other lightweight ciphers as well.
Resumo:
Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing Light gauge Steel Frame (LSF) wall systems made of 1.15 mm G500 steel studs and varying plasterboard and insulation configurations (cavity and external insulation) using full scale fire tests. Suitable finite element models of LSF walls were then developed and validated by comparing with test results. In this study, the validated finite element models of LSF wall panels subject to standard fire conditions were used in a detailed parametric study to investigate the effects of important parameters such as steel grade and thickness, plasterboard screw spacing, plasterboard lateral restraint, insulation materials and load ratio on their performance under standard fire conditions. Suitable equations were proposed to predict the time–temperature profiles of LSF wall studs with eight different plasterboard-insulation configurations, and used in the finite element analyses. Finite element parametric studies produced extensive fire performance data for the LSF wall panels in the form of load ratio versus time and critical hot flange (failure) temperature curves for eight wall configurations. This data demonstrated the superior fire performance of externally insulated LSF wall panels made of different steel grades and thicknesses. It also led to the development of a set of equations to predict the important relationship between the load ratio and the critical hot flange temperature of LSF wall studs. Finally this paper proposes a simplified method to predict the fire resistance rating of LSF walls based on the two proposed set of equations for the load ratio–hot flange temperature and the time–temperature relationships.
Resumo:
Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollagenous protein in extrafibrillar protein matrix) and hydroxyapatite (HA, a mineral nanoplatelet in mineralized collagen fibrils) were investigated using molecular dynamics method. We found that the interfacial mechanical behaviour is governed by the electrostatic attraction between acidic amino acid residues in OPN and calcium in HA. Higher energy dissipation is associated with the OPN peptides with a higher number of acidic amino acid residues. When loading in the interface direction, new bonds between some acidic residues and HA surface are formed, resulting in a stick-slip type motion of OPN peptide on the HA surface and high interfacial energy dissipation. The formation of new bonds during loading is considered to be a key mechanism responsible for high fracture resistance observed in bone and other biological materials.
Resumo:
The present article gives an overview of the reversible addition fragmentation chain transfer (RAFT) process. RAFT is one of the most versatile living radical polymerization systems and yields polymers of predictable chain length and narrow molecular weight distribution. RAFT relies on the rapid exchange of thiocarbonyl thio groups between growing polymeric chains. The key strengths of the RAFT process for polymer design are its high tolerance of monomer functionality and reaction conditions, the wide range of well-controlled polymeric architectures achievable, and its (in-principle) non-rate-retarding nature. This article introduces the mechanism of polymerization, the range of polymer molecular weights achievable, the range of monomers in which polymerization is controlled by RAFT, the various polymeric architectures that can be obtained, the type of end-group functionalities available to RAFT-made polymers, and the process of RAFT polymerization.
Resumo:
A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.
Resumo:
High-energy synchrotron in situ X-ray powder diffraction has been used to elucidate the mechanism of the hydriding phase transformation in a LaNi5 model hydrogen storage intermetallic in real time. The transformation proceeds at 10 °C via the transient growth of an interfacial phase, the γ phase, with lattice parameters intermediate between those of the α (dilute solid solution) and β (concentrated hydride) phases. The γ phase forms to partially accommodate the 24% change in unit cell volume between the α and β phases during hydriding and dehydriding. The α, γ and β phases coexist at the nanoscopic level.
Resumo:
Potent and specific enzyme inhibition is a key goal in the development of therapeutic inhibitors targeting proteolytic activity. The backbone-cyclized peptide, Sunflower Trypsin Inhibitor (SFTI-1) affords a scaffold that can be engineered to achieve both these aims. SFTI-1's mechanism of inhibition is unusual in that it shows fast-on/slow-off kinetics driven by cleavage and religation of a scissile bond. This phenomenon was used to select a nanomolar inhibitor of kallikrein-related peptidase 7 (KLK7) from a versatile library of SFTI variants with diversity tailored to exploit distinctive surfaces present in the active site of serine proteases. Inhibitor selection was achieved through the use of size exclusion chromatography to separate protease/inhibitor complexes from unbound inhibitors followed by inhibitor identification according to molecular mass ascertained by mass spectrometry. This approach identified a single dominant inhibitor species with molecular weight of 1562.4 Da, which is consistent with the SFTI variant SFTI-WCTF. Once synthesized individually this inhibitor showed an IC50 of 173.9 ± 7.6 nM against chromogenic substrates and could block protein proteolysis. Molecular modeling analysis suggested that selection of SFTI-WCTF was driven by specific aromatic interactions and stabilized by an enhanced internal hydrogen bonding network. This approach provides a robust and rapid route to inhibitor selection and design.