349 resultados para reflectance-difference spectroscopy
Resumo:
Objectives: To compare measures of fat-free mass (FFM) by three different bioelectrical impedance analysis (BIA) devices and to assess the agreement between three different equations validated in older adult and/or overweight populations. Design: Cross-sectional study. Setting: Orthopaedics ward of Brisbane public hospital, Australia. Participants: Twenty-two overweight, older Australians (72 yr ± 6.4, BMI 34 kg/m2 ± 5.5) with knee osteoarthritis. Measurements: Body composition was measured using three BIA devices: Tanita 300-GS (foot-to-foot), Impedimed DF50 (hand-to-foot) and Impedimed SFB7 (bioelectrical impedance spectroscopy (BIS)). Three equations for predicting FFM were selected based on their ability to be applied to an older adult and/ or overweight population. Impedance values were extracted from the hand-to-foot BIA device and included in the equations to estimate FFM. Results: The mean FFM measured by BIS (57.6 kg ± 9.1) differed significantly from those measured by foot-to-foot (54.6 kg ± 8.7) and hand-to-foot BIA (53.2 kg ± 10.5) (P < 0.001). The mean ± SD FFM predicted by three equations using raw data from hand-to-foot BIA were 54.7 kg ± 8.9, 54.7 kg ± 7.9 and 52.9 kg ± 11.05 respectively. These results did not differ from the FFM predicted by the hand-to-foot device (F = 2.66, P = 0.118). Conclusions: Our results suggest that foot-to-foot and hand-to-foot BIA may be used interchangeably in overweight older adults at the group level but due to the large limits of agreement may lead to unacceptable error in individuals. There was no difference between the three prediction equations however these results should be confirmed within a larger sample and against a reference standard.
Resumo:
Particle collections from the stratosphere via either the JSC Curatorial Program or the U2 Program (NASA Ames) occur between 16km and 19km altitude and are usually part of ongoing experiments to measure parameters related to the aerosol layer. Fine-grained aerosols (<0.1µm) occur in the stratosphere up to 35km altitude and are concentrated between 15km and 25km altitude[1]. All interplanetary dust particles (IDP's) from these stratospheric collections must pass through this aerosol layer before reaching the collection altitude. The major compounds in this aerosol layer are sulfur rich particulates (<0.1µm) and gases and include H2S04, OCS, S02 and CS2 [2].In order to assess possible surface reactions of interplanetary dust particles (IDP's) with ambient aerosols in the stratosphere, we have initiated a Surface Auger Microprobe (SAM) and electron microscope study of selected particles from the JSC Cosmic Dust Collection.
Resumo:
OBJECTIVE: To determine the point at which differences in clinical assessment scores on physical ability, pain and overall condition are sufficiently large to correspond to a subjective perception of a meaningful difference from the perspective of the patient. METHODS: Forty patients with a diagnosis of rheumatoid arthritis participated in an evening of clinical assessment and one-on-one conversations with each other regarding their arthritic condition. The assessments included tender and swollen joint counts, clinician and patient global assessments, participant assessment of pain and the Health Assessment Questionnaire (HAQ) on physical ability. After each conversation, participants rated themselves relative to their conversational partner on physical ability, pain and overall condition. These subjective comparative ratings were compared to the differences of the individual clinical assessments. RESULTS: In total there were 120 conversations. Generally participants judged themselves as less disabled than others. They rated themselves as "somewhat better" than their conversation partner when they had a (mean) 7% better score on the HAQ, 6% less pain, and 9% better global assessment. In contrast, they rated themselves as "somewhat worse" when they had a (mean) 16% worse score on the HAQ, 16% more pain, and 29% worse global assessment. CONCLUSIONS: Patients view clinically important differences in an asymmetric manner. These results can provide guidance in interpreting results and planning clinical trials.
Resumo:
The International Baccalaureate Diploma is an independent, globally available curriculum currently enjoying rapid uptake in government systems as an alternative curriculum. This paper explores the logic of its consumption in three case study schools across different states of Australia, and the relational ‘points of difference’ it creates in each local context and its curricular market. The analysis uses a typology of goods to describe the nature and dynamics of the IBD’s glocalised ecology of in each site. The conclusion argues the success of the IBD as a curricular alternative risks eroding its appeal as a positional good.
Resumo:
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is kemmlitzite (Sr,Ce)Al3(AsO4)(SO4)(OH)6. The objective of this research is to determine the molecular structure of the mineral kemmlitzite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the AsO43- , SO42- and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 984 cm-1 assigned to the SO42- symmetric stretching mode. Raman bands at 690, 772 and 825 cm-1 may be assigned to the AsO43- antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm-1 are attributable to the doubly degenerate 2 (SO4)2- bending mode. Vibrational spectroscopy is important in the assessment of the molecular structure of the kemmlitzite, especially when the mineral is non-diffracting or poorly diffracting.
Resumo:
The structure of the borate mineral sakhaite Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O, a borate–carbonate of calcium and magnesium has been assessed using vibrational spectroscopy. Assignment of bands is undertaken by comparison with the data from other published results. Intense Raman band at 1134 cm−1 with a shoulder at 1123 cm−1 is assigned to the symmetric stretching mode. The Raman spectrum displays bands at 1479, 1524 and 1560 cm−1 which are assigned to the antisymmetric stretching vibrations. The observation of multiple carbonate stretching bands supports the concept that the carbonate units are non-equivalent. The Raman band at 968 cm−1 with a shoulder at 950 cm−1 is assigned to the symmetric stretching mode of trigonal boron. Raman bands at 627 and 651 cm−1 are assigned to the out-of-plane bending modes of trigonal and tetrahedral boron. Raman spectroscopy coupled with infrared spectroscopy enables the molecular structure of the mineral sakhaite to be assessed.
Resumo:
Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl and occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic – pyramidal crystal system. An intense Raman band at 1009 cm−1 was assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1121, 1136, 1143 cm−1 are attributed to the in-plane bending vibrations of trigonal boron. Four sharp Raman bands observed at 415, 494, 621 and 671 cm−1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3405 and 3494 cm−1, thus indicating that some Cl anions have been replaced with OH units. The molecular structure of a natural boracite has been assessed by using vibrational spectroscopy.
Resumo:
A preceptor project at the Royal Brisbane and Women's Hospital in Queensland, Australia, explored existing levels of preceptorship support during the transition processes of newly employed or transferred nurses and midwives. Initiatives adopted have enhanced the implementation and maintenance of preceptorship principles and communication processes and defined accountability and responsibilities. Outcomes have contributed to enhanced role clarity, improved communication, increased support for teaching and learning, and infrastructure processes to facilitate the preceptor-preceptee relationship and increased retention.
Resumo:
Current diagnostic methods for assessing the severity of articular cartilage degenerative conditions, such as osteoarthritis, are inadequate. There is also a lack of techniques that can be used for real-time evaluation of the tissue during surgery to inform treatment decision and eliminate subjectivity. This book, derived from Dr Afara’s doctoral research, presents a scientific framework that is based on near infrared (NIR) spectroscopy for facilitating the non-destructive evaluation of articular cartilage health relative to its structural, functional, and mechanical properties. This development is a component of the ongoing research on advanced endoscopic diagnostic techniques in the Articular Cartilage Biomechanics Research Laboratory of Professor Adekunle Oloyede at Queensland University of Technology (QUT), Brisbane Australia.
Resumo:
Substantial growth has occurred in the telecommunication sector in Papua New Guinea (PNG) since 2007. Mobile telephony has spread to rural and remote localities, following decades of inadequate telephone services. This paper examines the introduction of mobile telephones into a rural village in PNG, and focuses on information access during emergency situations. It considers three tsunami alerts: one immediately prior to the introduction of mobile phone services in the area, and two which occurred after mobile phone reception became available. The research shows that for people with limited access to information, responses to threats such as tsunamis can be inappropriate and driven by fear and panic. By contrast, when there is reliable, timely information available, measured responses can be adopted. This research demonstrates how the use of newly-introduced communication technologies for handling emergencies may work in practice, benefitting people in poorer, rural communities.
Resumo:
In 1980 Alltop produced a family of cubic phase sequences that nearly meet the Welch bound for maximum non-peak correlation magnitude. This family of sequences were shown by Wooters and Fields to be useful for quantum state tomography. Alltop’s construction used a function that is not planar, but whose difference function is planar. In this paper we show that Alltop type functions cannot exist in fields of characteristic 3 and that for a known class of planar functions, x^3 is the only Alltop type function.
ACE research vignette 023 : Does firm location make a difference to the export performance of SME's?
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from our team of international Entrepreneurship researchers. This vignette, written by Mr. Darren Kavenagh and Professor Per Davidsson, deals with export capacity of Australian SMEs.
Resumo:
The 1st July 1997 heralded the implementation of a number of amendments to the Queensland Criminal Code including some intriguing changes affecting the principal property offences of stealing (section 398) and dishonest application (section 408C). This article discusses the impact of the changes. It examines the extent of the amendments and then aims to delineate the ambit of each offence drawing on some of the more recent judgments in the area. It concludes that the offences are moving closer together while retaining many of the complexities of proof experienced in the past.
Resumo:
Henmilite is a triclinic mineral with the crystal structure consisting of isolated B(OH)4 tetrahedra, planar Cu(OH)4 groups and Ca(OH)3 polyhedra. The structure can also be viewed as having dimers of Ca polyhedra connected to each other through 2B(OH) tetrahedra to form chains parallel to the C axis. The structure of the mineral has been assessed by the combination of Raman and infrared spectra. Raman bands at 902, 922, 951, and 984 cm−1 and infrared bands at 912, 955 and 998 cm−1 are assigned to stretching vibrations of tetragonal boron. The Raman band at 758 cm−1 is assigned to the symmetric stretching mode of tetrahedral boron. The series of bands in the 400–600 cm−1 region are due to the out-of-plane bending modes of tetrahedral boron. Two very sharp Raman bands are observed at 3559 and 3609 cm−1. Two infrared bands are found at 3558 and 3607 cm−1. These bands are assigned to the OH stretching vibrations of the OH units in henmilite. A series of Raman bands are observed at 3195, 3269, 3328, 3396, 3424 and 3501 cm−1 are assigned to water stretching modes. Infrared spectroscopy also identified water and OH units in the henmilite structure. It is proposed that water is involved in the structure of henmilite. Hydrogen bond distances based upon the OH stretching vibrations using a Libowitzky equation were calculated. The number and variation of water hydrogen bond distances are important for the stability off the mineral.