334 resultados para ratchetting of railhead, insulated rail joints
Resumo:
An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.
Resumo:
Many ageing road bridges, particularly timber bridges, require urgent improvement due to the demand imposed by the recent version of the Australian bridge loading code, AS 5100. As traffic volume plays a key role in the decision of budget allocations for bridge refurbishment/ replacement, many bridges in low volume traffic network remain in poor condition with axle load and/ or speed restrictions, thus disadvantaging many rural communities. This thesis examines an economical and environmentally sensible option of incorporating disused flat rail wagons (FRW) in the construction of bridges in low volume, high axle load road network. The constructability, economy and structural adequacy of the FRW road bridge is reported in the thesis with particular focus of a demonstration bridge commissioned in regional Queensland. The demonstration bridge comprises of a reinforced concrete slab (RCS) pavement resting on two FRWs with custom designed connection brackets at regular intervals along the span of the bridge. The FRW-RC bridge deck assembly is supported on elastomeric rubber pads resting on the abutment. As this type of bridge replacement technology is new and its structural design is not covered in the design standards, the in-service structural performance of the FRW bridge subjected to the high axle loadings prescribed in AS 5100 is examined through performance load testing. Both the static and the moving load tests are carried out using a fully laden commonly available three-axle tandem truck. The bridge deck is extensively strain gauged and displacement at several key locations is measured using linear variable displacement transducers (LVDTs). A high speed camera is used in the performance test and the digital image data are analysed using proprietary software to capture the locations of the wheel positions on the bridge span accurately. The wheel location is thus synchronised with the displacement and strain time series to infer the structural response of the FRW bridge. Field test data are used to calibrate a grillage model, developed for further analysis of the FRW bridge to various sets of high axle loads stipulated in the bridge design standard. Bridge behaviour predicted by the grillage model has exemplified that the live load stresses of the FRW bridge is significantly lower than the yield strength of steel and the deflections are well below the serviceability limit state set out in AS 5100. Based on the results reported in this thesis, it is concluded that the disused FRWs are competent to resist high axle loading prescribed in AS 5100 and are a viable alternative structural solution of bridge deck in the context of the low volume road networks.
Resumo:
Bicycling at night is more dangerous than in the daytime and poor conspicuity is likely to be a contributing factor. The use of reflective markings on a pedestrian’s major joints to facilitate the perception of biological motion has been shown to greatly enhance pedestrian conspicuity at night, but few corresponding data exist for bicyclists. Twelve younger and twelve older participants drove around a closed-road circuit at night and indicated when they first saw a bicyclist who wore black clothing either alone, or together with a reflective bicycling vest, or a vest plus ankle and knee reflectors. The bicyclist pedaled in place on a bicycle that had either a static or flashing light, or no light on the handlebars. Bicyclist clothing significantly affected conspicuity; drivers responded to bicyclists wearing the vest plus ankle and knee reflectors at significantly longer distances than when the bicyclist wore the vest alone or black clothing without a vest. Older drivers responded to bicyclists less often and at shorter distances than younger drivers. The presence of a bicycle light, whether static or flashing, did not enhance the conspicuity of the bicyclist; this may result in bicyclists who use a bicycle light being overconfident of their own conspicuity at night. The implications of our findings are that ankle and knee markings are a simple and very effective approach for enhancing bicyclist conspicuity at night.
Resumo:
This paper discusses human factors issues of low cost railway level crossings in Australia. Several issues are discussed in this paper including safety at passive level railway crossings, human factors considerations associated with unavailability of a warning device, and a conceptual model for how safety could be compromised at railway level crossings following prolonged or frequent unavailability. The research plans to quantify safety risk to motorists at level crossings using a Human Reliability Assessment (HRA) method, supported by data collected using an advanced driving simulator. This method aims to identify human error within tasks and task units identified as part of the task analysis process. It is anticipated that by modelling driver behaviour the current study will be able to quantify meaningful task variability including temporal parameters, between participants and within participants. The process of complex tasks such as driving through a level crossing is fundamentally context-bound. Therefore this study also aims to quantify those performance-shaping factors that contribute to vehicle train collisions by highlighting changes in the task units and driver physiology. Finally we will also consider a number of variables germane to ensuring external validity of our results. Without this inclusion, such an analysis could seriously underestimate risk.
Resumo:
Background: In vitro investigations have demonstrated the importance of the ribcage in stabilising the thoracic spine. Surgical alterations of the ribcage may change load-sharing patterns in the thoracic spine. Computer models are used in this study to explore the effect of surgical disruption of the rib-vertebrae connections on ligament load-sharing in the thoracic spine. Methods: A finite element model of a T7-8 motion segment, including the T8 rib, was developed using CT-derived spinal anatomy for the Visible Woman. Both the intact motion segment and the motion segment with four successive stages of destabilization (discectomy and removal of right costovertebral joint, right costotransverse joint and left costovertebral joint) were analysed for a 2000Nmm moment in flexion/extension, lateral bending and axial rotation. Joint rotational moments were compared with existing in vitro data and a detailed investigation of the load sharing between the posterior ligaments carried out. Findings: The simulated motion segment demonstrated acceptable agreement with in vitro data at all stages of destabilization. Under lateral bending and axial rotation, the costovertebral joints were of critical importance in resisting applied moments. In comparison to the intact joint, anterior destabilization increases the total moment contributed by the posterior ligaments. Interpretation: Surgical removal of the costovertebral joints may lead to excessive rotational motion in a spinal joint, increasing the risk of overload and damage to the remaining ligaments. The findings of this study are particularly relevant for surgical procedures involving rib head resection, such as some techniques for scoliosis deformity correction.
Resumo:
There is widespread argument that traditional organisations and industries with a predominantly older workforce who are not using computers as an integral part of their work, are unlikely to embrace the opportunities afforded by e-learning. However, the challenge remains to engage a younger generation of learners who seem comfortable learning with technology, whilst not alienating those older learners who may prefer to learn in more traditional ways. This paper analyses data from five case organisations within the Australian rail industry to identify how the potential of e-learning can be realised whilst acknowledging the technological divide between younger and older workers.
Resumo:
Ultrafine particles (UFPs, <100 nm) are produced in large quantities by vehicular combustion and are implicated in causing several adverse human health effects. Recent work has suggested that a large proportion of daily UFP exposure may occur during commuting. However, the determinants, variability and transport mode-dependence of such exposure are not well-understood. The aim of this review was to address these knowledge gaps by distilling the results of ‘in-transit’ UFP exposure studies performed to-date, including studies of health effects. We identified 47 exposure studies performed across 6 transport modes: automobile, bicycle, bus, ferry, rail and walking. These encompassed approximately 3000 individual trips where UFP concentrations were measured. After weighting mean UFP concentrations by the number of trips in which they were collected, we found overall mean UFP concentrations of 3.4, 4.2, 4.5, 4.7, 4.9 and 5.7 × 10^4 particles cm^-3 for the bicycle, bus, automobile, rail, walking and ferry modes, respectively. The mean concentration inside automobiles travelling through tunnels was 3.0 × 10^5 particles cm^-3. While the mean concentrations were indicative of general trends, we found that the determinants of exposure (meteorology, traffic parameters, route, fuel type, exhaust treatment technologies, cabin ventilation, filtration, deposition, UFP penetration) exhibited marked variability and mode-dependence, such that it is not necessarily appropriate to rank modes in order of exposure without detailed consideration of these factors. Ten in-transit health effects studies have been conducted and their results indicate that UFP exposure during commuting can elicit acute effects in both healthy and health-compromised individuals. We suggest that future work should focus on further defining the contribution of in-transit UFP exposure to total UFP exposure, exploring its specific health effects and investigating exposures in the developing world. Keywords: air pollution; transport modes; acute health effects; travel; public transport
Resumo:
New knowledge has raised a concern about the cost-ineffective design methods and the true performance of railroad prestressed concrete ties. Because of previous knowledge deficiencies, railway civil and track engineers have been aware of the conservative design methods for structural components in any railway track that rely on allowable stresses and material strength reductions. In particular, railway sleeper (or railroad tie) is an important component of railway tracks and is commonly made of prestressed concrete. The existing code for designing such components makes use of the permissible stress design concept, whereas the fiber stresses over cross sections at initial and final stages are limited by some empirical values. It is believed that the concrete ties complying with the permissible stress concept possess unduly untapped fracture toughness, based on a number of proven experiments and field data. Collaborative research run by the Australian Cooperative Research Centre for Railway Engineering and Technologies (Rail CRC) was initiated to ascertain the reserved capacity of Australian railway prestressed concrete ties that were designed using the existing design code. The findings have led to the development of a new limit-states design concept. This paper highlights the conventional and the new limit-states design philosophies and their implication to both the railway community and the public. © 2011 American Society of Civil Engineers.
Resumo:
Pipelines are important lifeline facilities spread over a large area and they generally encounter a range of seismic hazards and different soil conditions. The seismic response of a buried segmented pipe depends on various parameters such as the type of buried pipe material and joints, end restraint conditions, soil characteristics, burial depths, and earthquake ground motion, etc. This study highlights the effect of the variation of geotechnical properties of the surrounding soil on seismic response of a buried pipeline. The variations of the properties of the surrounding soil along the pipe are described by sampling them from predefined probability distribution. The soil-pipe interaction model is developed in OpenSEES. Nonlinear earthquake time-history analysis is performed to study the effect of soil parameters variability on the response of pipeline. Based on the results, it is found that uncertainty in soil parameters may result in significant response variability of the pipeline.
Resumo:
When compared with other arthoplasties, Total Ankle Joint Replacement (TAR) is much less successful. Attempts to remedy this situation by modifying the implant design, for example by making its form more akin to the original ankle anatomy, have largely met with failure. One of the major obstacles is a gap in current knowledge relating to ankle joint force. Specifically this is the lack of reliable data quantifying forces and moments acting on the ankle, in both the healthy and diseased joints. The limited data that does exist is thought to be inaccurate [1] and is based upon simplistic two dimensional discrete and outdated techniques.
Resumo:
High Speed Rail (HSR) is rapidly gaining popularity worldwide as a safe and efficient transport option for long-distance travel. Designed to win market shares from air transport, HSR systems optimise their productivity between increasing speeds and station spacing to offer high quality service and gain ridership. Recent studies have investigated the effects that the deployment of HSR infrastructure has on spatial distribution and the economic development of cities and regions. Findings appear mostly positive at higher geographical scales, where HSR links connect major urban centres several hundred kilometres apart and already well positioned within a national or international context. Also, at the urban level, studies have shown regeneration and concentration effects around HSR station areas with positive returns on city’s image and economy. However, doubts persist on the effects of HSR at an intermediate scale, where the accessibility trade off on station spacing limits access to many small and medium agglomerations. Thereby, their ability to participate in the development opportunities facilitated by HSR infrastructure is significantly reduced. The locational advantages deriving from transport improvements appear contrasting especially in regions that tend to have a polycentric structure, where cities may present greater accessibility disparities between those served by HSR and those left behind. This thesis fits in this context where intermediate and regional cities do not directly enjoy the presence of an HSR station while having an existing or planned proximate HSR corridor. With the aim of understanding whether there might be a solution to this apparent incongruity, the research investigates strategies to integrate HSR accessibility at the regional level. While current literature recommends to commit with ancillary investments to the uplift of station areas and the renewal of feeder systems, I hypothesised the interoperability between the HSR and the conventional networks to explore the possibilities offered by mixed traffic and infrastructure sharing. Thus, I developed a methodology to quantify the exchange of benefits deriving from this synergistic interaction. In this way, it was possible to understand which level of service quality offered by alternative transit strategies best facilitates the distribution of accessibility benefits for areas far from actual HSR stations. Therefore, strategies were selected for their type of service capable of regional extensions and urban penetrations, while incorporating a combination of specific advantages (e.g. speed, sub-urbanity, capacity, frequency and automation) in order to emulate HSR quality with increasingly efficient services. The North-eastern Italian macro region was selected as case study to ground the research offering concurrently a peripheral polycentric metropolitan form, the presence of a planned HSR corridor with some portions of HSR infrastructure implementation, and the project to develop a suburban rail service extended regionally. Results show significant distributive potential, in terms of network effects produced in relation with HSR, in increasing proportions for all the strategies considered: a regional metro rail strategy (abbreviated RMR), a regional high speed rail strategy (abbreviated RHSR), a regional light rail transit (abbreviated LRT) strategy, and a non-stopping continuous railway system (abbreviated CRS) strategy. The provision of additional tools to value HSR infrastructure against its accessibility benefits and their regional distribution through alternative strategies beyond the actual HSR stations, would have great implications, both politically and technically, in moving towards new dimensions of HSR evaluation and development.
Resumo:
Aims: This study determined whether the visibility benefits of positioning retroreflective strips in biological motion configurations were evident at real world road worker sites. Methods: 20 visually normal drivers (M=40.3 years) participated in this study that was conducted at two road work sites (one suburban and one freeway) on two separate nights. At each site, four road workers walked in place wearing one of four different clothing options: a) standard road worker night vest, b) standard night vest plus retroreflective strips on thighs, c) standard night vest plus retroreflective strips on ankles and knees, d) standard night vest plus retroreflective strips on eight moveable joints (full biomotion). Participants seated in stationary vehicles at three different distances (80m, 160m, 240m) rated the relative conspicuity of the four road workers using a series of a standardized visibility and ranking scales. Results: Adding retroreflective strips in the full biomotion configuration to the standard night vest significantly (p<0.001) enhanced perceptions of road worker visibility compared to the standard vest alone, or in combination with thigh retroreflective markings. These visibility benefits were evident at all distances and at both sites. Retroreflective markings at the ankles and knees also provided visibility benefits compared to the standard vest, however, the full biomotion configuration was significantly better than all of the other configurations. Conclusions: These data provide the first evidence that the benefits of biomotion retroreflective markings that have been previously demonstrated under laboratory and closed- and open-road conditions are also evident at real work sites.
Resumo:
As civil infrastructures such as bridges age, there is a concern for safety and a need for cost-effective and reliable monitoring tool. Different diagnostic techniques are available nowadays for structural health monitoring (SHM) of bridges. Acoustic emission is one such technique with potential of predicting failure. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). AEtechnique involves recording the stress waves bymeans of sensors and subsequent analysis of the recorded signals,which then convey information about the nature of the source. AE can be used as a local SHM technique to monitor specific regions with visible presence of cracks or crack prone areas such as welded regions and joints with bolted connection or as a global technique to monitor the whole structure. Strength of AE technique lies in its ability to detect active crack activity, thus helping in prioritising maintenance work by helping focus on active cracks rather than dormant cracks. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. One is the generation of large amount of data during the testing; hence an effective data analysis and management is necessary, especially for long term monitoring uses. Complications also arise as a number of spurious sources can giveAEsignals, therefore, different source discrimination strategies are necessary to identify genuine signals from spurious ones. Another major challenge is the quantification of damage level by appropriate analysis of data. Intensity analysis using severity and historic indices as well as b-value analysis are some important methods and will be discussed and applied for analysis of laboratory experimental data in this paper.
Resumo:
The subtalar joint has been presumed to account for most of the pathologic motion in the foot and ankle, but research has shown that motion at other foot joints is greater than traditionally expected. Although recent research demonstrates the complexity of the kinematic variables in the foot and ankle, it still fails to expand our knowledge of the role of the musculotendinous structures in the biomechanics of the foot and ankle and how this is affected by in-shoe orthoses. The aim of this study was to simulate the effect of in-shoe foot orthoses by manipulation of the ground reaction force (GRF) components and centre of pressure (CoP) to demonstrate the resultant effect on muscle force in selected muscles during both the rearfoot loading response and stance phase of the gait cycle. We found that any medial wedge increases ankle joint load during gait cycle, while a lateral wedge decreases the joint load during the stance phase.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.