444 resultados para multi-armed bandit
Resumo:
Data mining techniques extract repeated and useful patterns from a large data set that in turn are utilized to predict the outcome of future events. The main purpose of the research presented in this paper is to investigate data mining strategies and develop an efficient framework for multi-attribute project information analysis to predict the performance of construction projects. The research team first reviewed existing data mining algorithms, applied them to systematically analyze a large project data set collected by the survey, and finally proposed a data-mining-based decision support framework for project performance prediction. To evaluate the potential of the framework, a case study was conducted using data collected from 139 capital projects and analyzed the relationship between use of information technology and project cost performance. The study results showed that the proposed framework has potential to promote fast, easy to use, interpretable, and accurate project data analysis.
Resumo:
This study is motivated by, and proceeds from, a central interest in the importance of evaluating IS service quality and adopts the IS ZOT SERVQUAL instrument (Kettinger & Lee, 2005) as its core theory base. This study conceptualises IS service quality as a multidimensional formative construct and seeks to answer the main research questions: “Is the IS service quality construct valid as a 1st-order formative, 2nd-order formative multidimensional construct?” Additionally, with the aim of validating the IS service quality construct within its nomological net, as in prior service marketing work, Satisfaction was hypothesised as its immediate consequence. With the goal of testing the above research question, IS service quality and Satisfaction were operationalised in a quantitative survey instrument. Partial least squares (PLS), employing 219 valid responses, largely evidenced the validity of IS service quality as a multidimensional formative construct. The nomological validity of the IS service quality construct was also evidenced by demonstrating that 55% of Satisfaction was explained by the multidimensional formative IS service quality construct.
Resumo:
Finding an appropriate linking method to connect different dimensional element types in a single finite element model is a key issue in the multi-scale modeling. This paper presents a mixed dimensional coupling method using multi-point constraint equations derived by equating the work done on either side of interface connecting beam elements and shell elements for constructing a finite element multiscale model. A typical steel truss frame structure is selected as case example and the reduced scale specimen of this truss section is then studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details while the different analytical models are developed for numerical simulation. Comparison of dynamic and static response of the calculated results among different numerical models as well as the good agreement with those from experimental results indicates that the proposed multi-scale model is efficient and accurate.
Resumo:
The paper investigates two advanced Computational Intelligence Systems (CIS) for a morphing Unmanned Aerial Vehicle (UAV) aerofoil/wing shape design optimisation. The first CIS uses Genetic Algorithm (GA) and the second CIS uses Hybridized GA (HGA) with the concept of Nash-Equilibrium to speed up the optimisation process. During the optimisation, Nash-Game will act as a pre-conditioner. Both CISs; GA and HGA, are based on Pareto optimality and they are coupled to Euler based Computational Fluid Dynamic (CFD) analyser and one type of Computer Aided Design (CAD) system during the optimisation.
Resumo:
The study presents a multi-layer genetic algorithm (GA) approach using correlation-based methods to facilitate damage determination for through-truss bridge structures. To begin, the structure’s damage-suspicious elements are divided into several groups. In the first GA layer, the damage is initially optimised for all groups using correlation objective function. In the second layer, the groups are combined to larger groups and the optimisation starts over at the normalised point of the first layer result. Then the identification process repeats until reaching the final layer where one group includes all structural elements and only minor optimisations are required to fine tune the final result. Several damage scenarios on a complicated through-truss bridge example are nominated to address the proposed approach’s effectiveness. Structural modal strain energy has been employed as the variable vector in the correlation function for damage determination. Simulations and comparison with the traditional single-layer optimisation shows that the proposed approach is efficient and feasible for complicated truss bridge structures when the measurement noise is taken into account.
Resumo:
In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.
Resumo:
Person re-identification involves recognising individuals in different locations across a network of cameras and is a challenging task due to a large number of varying factors such as pose (both subject and camera) and ambient lighting conditions. Existing databases do not adequately capture these variations, making evaluations of proposed techniques difficult. In this paper, we present a new challenging multi-camera surveillance database designed for the task of person re-identification. This database consists of 150 unscripted sequences of subjects travelling in a building environment though up to eight camera views, appearing from various angles and in varying illumination conditions. A flexible XML-based evaluation protocol is provided to allow a highly configurable evaluation setup, enabling a variety of scenarios relating to pose and lighting conditions to be evaluated. A baseline person re-identification system consisting of colour, height and texture models is demonstrated on this database.
Resumo:
Chlamydial infections represent a major threat to the long-term survival of the koala and a successful vaccine would provide a valuable management tool. Vaccination however has the potential to enhance inflammatory disease in animals exposed to a natural infection prior to vaccination, a finding in early human and primate trials of whole cell vaccines to prevent trachoma. In the present study, we vaccinated both healthy koalas as well as clinically diseased koalas with a multi-subunit vaccine consisting of Chlamydia pecorum MOMP and NrdB mixed with immune stimulating complex as adjuvant. Following vaccination, there was no increase in inflammatory pathological changes in animals previously infected with Chlamydia. Strong antibody (including neutralizing antibodies) and lymphocyte proliferation responses were recorded in all vaccinated koalas, both healthy and clinically diseased. Vaccine induced antibodies specific for both vaccine antigens were observed not only in plasma but also in ocular secretions. Our data shows that an experimental chlamydial vaccine is safe to use in previously infected koalas, in that it does not worsen infection-associated lesions. Furthermore, the prototype vaccine is effective, as demonstrated by strong levels of neutralizing antibody and lymphocyte proliferation responses in both healthy and clinically diseased koalas. Collectively, this work illustrates the feasibility of developing a safe and effective Chlamydia vaccine as a tool for management of disease in wild koalas.
Resumo:
When using a mobile device to control a cursor on a large shared display, the interaction must be carefully planned to match the environment and purpose of the systems use. We describe a ‘democratic jukebox’ system that revealed five recommendations that should be considered when designing this type of interaction relating to providing feedback to the user; how to represent users in a multi-cursor based system; where people tend to look and their expectation of how to move their cursor; the orientation of screens and the social context; and, the use of simulated users to give the real users a sense that they are engaging with a greater audience.
Resumo:
During an intensive design-led workshop multidisciplinary design teams examined options for a sustainable multi-residential tower on an inner urban site in Brisbane (Australia). The main aim was to demonstrate the key principles of daylight to every habitable room and cross-ventilation to every apartment in the subtropical climate while responding to acceptable yield and price points. The four conceptual design proposals demonstrated a wide range of outcomes, with buildings ranging from 15 to 30 storeys. Daylight Factor (DF), view to the outside, and the avoidance of direct sunlight were the only quantitative and qualitative performance metrics used to implement daylighting to the proposed buildings during the charrette. This paper further assesses the daylighting performance of the four conceptual designs by utilizing Climate-based daylight modeling (CBDM), specifically Daylight Autonomy (DA) and Useful Daylight Illuminance (UDI). Results show that UDI 100-2000lux calculations provide more useful information on the daylighting design than DF. The percentage of the space with a UDI <100-2000lux larger than 50% ranged from 77% to 86% of the time for active occupant behaviour (occupancy from 6am to 6pm). The paper also highlights the architectural features that mostly affect daylighting design in subtropical climates.
Resumo:
This paper will present program developers and institutional administrators with a program delivery model suitable for cross cultural international delivery developing students from industry through to master’s level tertiary qualifications. The model was designed to meet the needs of property professionals from an industry where technical qualifications are the norm and tertiary qualifications are emerging. A further need was to develop and deliver a program that enhanced the University’s current program profile in both the domestic and international arenas. Early identification of international educational partners, industry need and the ability to service the program were vital to the successful development of Master of Property program. The educational foundations of the program rest in educational partners, local tutorial support, international course management, cultural awareness of and in content, online communication fora, with a delivery focus on problem-based learning, self-directed study, teamwork and the development of a global understanding and awareness of the international property markets. In enrolling students from a diverse cultural background with technical qualifications and/or extensive work experience there are a number of educational barriers to be overcome for all students to successfully progress and complete the program. These barriers disappear when the following mechanisms are employed: individual student pathways, tutorial support by qualified peers, enculturation into tertiary practice, assessment tasks that recognise cultural norms and values, and finally that value is placed on the experiential knowledge, cultural practices and belief systems of the students.
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.