432 resultados para major mineral


Relevância:

20.00% 20.00%

Publicador:

Resumo:

KPNA3 is a gene that has been linked to schizophrenia susceptibility. In this study we investigated the possible association between KPNA3 variation and schizophrenia. To investigate a wider role of KPNA3 across psychiatric disorders we also analysed major depression, PTSD, nicotine dependent, alcohol dependent and opiate dependent cohorts. Using a haplotype block-based gene-tagging approach we genotyped six KPNA3 single nucleotide polymorphisms (SNPs) in 157 schizophrenia patients, 121 post-traumatic stress disorder patients, 120 opiate dependent patients, 231 alcohol dependent patients, 147 nicotine dependent patients and 266 major depression patients. One SNP rs2273816 was found to be significantly associated with schizophrenia, opiate dependence and alcohol dependence at the genotype and allele level. Major depression was also associated with rs2273816 but only at the allele level. Our study suggests that KPNA3 may contribute to the genetic susceptibility to schizophrenia as well as other psychiatric disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CI chondrites are used pervasively in the meteorite literature as a cosmochemical reference point for bulk compositions[1], isotope analyses[2] and, within certain models of meteorite evolution, as an important component of an alteration sequence within the carbonaceous chondrite subset[3]. More recently, the chemical variablity of CI chondrite matrices (which comprise >80% of the meteorite), has been cited in discussions about the "chondritic" nature of spectroscopic data from P/comet Halley missions[4] and of chemical data from related materials such as interplanetary dust particles[5]. Most CI chondrites have been studied as bulk samples(e.g. major and trace element abundances)and considerable effort has also been focussed on accessory phases such as magnetites, olivine, sulphates and carbonates [6-8]. A number of early studies showed that the primary constituents of CI matrices are layer silicates and the most definitive structural study on powdered samples identified two minerals: montmorillonite and serpentine[9]. In many cases, as with the study by Bass[9],the relative scarcity of most CI chondrites restricts such bulk analyses to the Orgueil meteorite. The electron microprobe/SEM has been used on petrographic sections to more precisely define the "bulk" composition of at least four CI matrices[3], and as recently summarised by McSween[3], these data define a compositional trend quite different to that obtained for CM chondrite matrices. These "defocussed-beam" microprobe analyses average major element compositions over matrix regions ~lOOµm in diameter and provide only an approximation to silicate mineral composition(s) because their grain sizes are much less than the diameter of the beam. In order to (a) more precisely define the major element compositions of individual mineral grains within CI matrices, and (b)complement previous TEM studies [11,12], we have undertaken an analytical electron microscopy (AEM) study of Alais and Orgueil matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resection of DNA double-strand breaks (DSBs) to generate ssDNA tails is a pivotal event in the cellular response to these breaks. In the two-step model of resection, primarily elucidated in yeast, initial resection by Mre11-CtIP is followed by extensive resection by two distinct pathways involving Exo1 or BLM/WRN-Dna2. However, resection pathways and their exact contributions in humans in vivo are not as clearly worked out as in yeast. Here, we examined the contribution of Exo1 to DNA end resection in humans in vivo in response to ionizing radiation (IR) and its relationship with other resection pathways (Mre11-CtIP or BLM/WRN). We find that Exo1 plays a predominant role in resection in human cells along with an alternate pathway dependent on WRN. While Mre11 and CtIP stimulate resection in human cells, they are not absolutely required for this process and Exo1 can function in resection even in the absence of Mre11-CtIP. Interestingly, the recruitment of Exo1 to DNA breaks appears to be inhibited by the NHEJ protein Ku80, and the higher level of resection that occurs upon siRNA-mediated depletion of Ku80 is dependent on Exo1. In addition, Exo1 may be regulated by 53BP1 and Brca1, and the restoration of resection in BRCA1-deficient cells upon depletion of 53BP1 is dependent on Exo1. Finally, we find that Exo1-mediated resection facilitates a transition from ATM- to ATR-mediated cell cycle checkpoint signaling. Our results identify Exo1 as a key mediator of DNA end resection and DSB repair and damage signaling decisions in human cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of HCl on authigenic chlorite in three different sandstones has been examined uisng an Environmental Scanning Electron Microscope (ESEM), together with conventional analytical techniques. The ESEM enabled chlorites to be directly observed in situ at high magnifications during HCl treatment, and was particularly effective in allowing the same chlorite areas to be closely compared before and after acid treatment. Chlorites were reacted with 1M to 10M HCl at temperatures up to 80°C and for periods up to five months. After all treatments, chlorites show extensive leaching of iron, magnesium and aluminum, and their crystalline structure is destroyed. However, despite these major compositional and structural changes, chlorites show little or no visible evidence of acid attack, with precise morphological detail of individual plates preserved in all samples following acid treatments. Chlorite dissolution, sensu stricto, did not occur as a result of acidization of the host sandstones. Acid-treated chlorides are likely to exits in a structurally weakened state that may make them susceptible to physical disintegration during fluid flow. Accordingly, fines migration may be a significant engineering problem associated with the acidization of chlorite-bearing sandstones. © 1993.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is kemmlitzite (Sr,Ce)Al3(AsO4)(SO4)(OH)6. The objective of this research is to determine the molecular structure of the mineral kemmlitzite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the AsO43- , SO42- and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 984 cm-1 assigned to the SO42- symmetric stretching mode. Raman bands at 690, 772 and 825 cm-1 may be assigned to the AsO43- antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm-1 are attributable to the doubly degenerate 2 (SO4)2- bending mode. Vibrational spectroscopy is important in the assessment of the molecular structure of the kemmlitzite, especially when the mineral is non-diffracting or poorly diffracting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective flocculation and dewatering of mineral processing streams containing clays are microstructure dependent in clay-water systems. Initial clay flocculation is crucial in the design and for the development of a new methodology of gas exploitation. Microstructural engineering of clay aggregates using covalent cations and Keggin macromolecules have been monitored using the new state of the art Transmission X-ray Microscope (TXM) with 60 nm tomography resolution installed in a Taiwanese synchrotron. The 3-D reconstructions from TXM images show complex aggregation structures in montmorillonite aqueous suspensions after treatment with Na+, Ca2+ and Al13 Keggin macromolecules. Na-montmorillonite displays elongated, parallel, well-orientated and closed-void cellular networks, 0.5–3 μm in diameter. After treatment by covalent cations, the coagulated structure displays much smaller, randomly orientated and openly connected cells, 300–600 nm in diameter. The average distances measured between montmorillonite sheets was around 450 nm, which is less than half of the cell dimension measured in Na-montmorillonite. The most dramatic structural changes were observed after treatment by Al13 Keggin; aggregates then became arranged in compacted domains of a 300 nm average diameter composed of thick face-to-face oriented sheets, which forms porous aggregates with larger intra-aggregate open and connected voids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the borate mineral sakhaite Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O, a borate–carbonate of calcium and magnesium has been assessed using vibrational spectroscopy. Assignment of bands is undertaken by comparison with the data from other published results. Intense Raman band at 1134 cm−1 with a shoulder at 1123 cm−1 is assigned to the symmetric stretching mode. The Raman spectrum displays bands at 1479, 1524 and 1560 cm−1 which are assigned to the antisymmetric stretching vibrations. The observation of multiple carbonate stretching bands supports the concept that the carbonate units are non-equivalent. The Raman band at 968 cm−1 with a shoulder at 950 cm−1 is assigned to the symmetric stretching mode of trigonal boron. Raman bands at 627 and 651 cm−1 are assigned to the out-of-plane bending modes of trigonal and tetrahedral boron. Raman spectroscopy coupled with infrared spectroscopy enables the molecular structure of the mineral sakhaite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jeremejevite is a borate mineral of aluminium and is of variable colour, making the mineral and important inexpensive jewel. The mineral contains variable amounts of F and OH, depending on origin. A comparison of the vibrational spectroscopic data is made with the published data of borate minerals. Raman spectra were averaged over a range of crystal orientations. Two intense Raman bands observed at 961 and 1067 cm−1 are assigned to the symmetric stretching and antisymmetric stretching modes of trigonal boron. Infrared spectrum, bands observed at 1229, 1304, 1350, 1388 and 1448 cm−1 are attributed to BOH in-plane bending modes. Intense Raman band found at 372 cm−1 with other bands of significant intensity at 327 and 417 cm−1 is assigned to trigonal borate bending modes. A quite intense Raman band is found at 3673 cm−1 with other sharp Raman bands found at 3521, 3625 and 3703 cm−1 are assigned to the stretching modes of OH. Raman and infrared spectroscopy has been used to assess the molecular structure of the mineral jeremejevite. Such research is important in the study of borate based nanomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl and occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic – pyramidal crystal system. An intense Raman band at 1009 cm−1 was assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1121, 1136, 1143 cm−1 are attributed to the in-plane bending vibrations of trigonal boron. Four sharp Raman bands observed at 415, 494, 621 and 671 cm−1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3405 and 3494 cm−1, thus indicating that some Cl anions have been replaced with OH units. The molecular structure of a natural boracite has been assessed by using vibrational spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, we have used vibrational spectroscopy to study the phosphate mineral kosnarite KZr2(PO4)3. Interest in this mineral rests with the ability of zirconium phosphates (ZP) to lock in radioactive elements. ZP have the capacity to concentrate and immobilize the actinide fraction of radioactive phases in homogeneous zirconium phosphate phases. The Raman spectrum of kosnarite is characterized by a very intense band at 1,026 cm−1 assigned to the symmetric stretching vibration of the PO4 3− ν1 symmetric stretching vibration. The series of bands at 561, 595 and 638 cm−1 are assigned to the ν4 out-of-plane bending modes of the PO4 3− units. The intense band at 437 cm−1 with other bands of lower wavenumber at 387, 405 and 421 cm−1 is assigned to the ν2 in-plane bending modes of the PO4 3− units. The number of bands in the antisymmetric stretching region supports the concept that the symmetry of the phosphate anion in the kosnarite structure is preserved. The width of the infrared spectral profile and its complexity in contrast to the well-resolved Raman spectrum show that the pegmatitic phosphates are better studied with Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral beryllonite has been characterized by the combination of Raman spectroscopy and infrared spectroscopy. SEM–EDX was used for the chemical analysis of the mineral. The intense sharp Raman band at 1011 cm-1, was assigned to the phosphate symmetric stretching mode. Raman bands at 1046, 1053, 1068 and the low intensity bands at 1147, 1160 and 1175 cm-1 are attributed to the phosphate antisymmetric stretching vibrations. The number of bands in the antisymmetric stretching region supports the concept of symmetry reduction of the phosphate anion in the beryllonite structure. This concept is supported by the number of bands found in the out-of-plane bending region. Multiple bands are also found in the in-plane bending region with Raman bands at 399, 418, 431 and 466 cm-1. Strong Raman bands at 304 and 354 cm-1 are attributed to metal oxygen vibrations. Vibrational spectroscopy served to determine the molecular structure of the mineral. The pegmatitic phosphate minerals such as beryllonite are more readily studied by Raman spectroscopy than infrared spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed investigation of an intermediate member of the reddingite–phosphoferrite series, using infrared and Raman spectroscopy, scanning electron microcopy and electron microprobe analysis, has been carried out on a homogeneous sample from a lithium-bearing pegmatite named Cigana mine, near Conselheiro Pena, Minas Gerais, Brazil. The determined formula is (Mn1.60Fe1.21Ca0.01Mg0.01)∑2.83(PO4)2.12⋅(H2O2.85F0.01)∑2.86 indicating predominance in the reddingite member. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of reddingite-phosphoferrite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of reddingite–phosphoferrite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the determination of the structure of these minerals. Among this group of minerals is pitticite, simply described as (Fe, AsO4, SO4, H2O). In this work, the analogue of the mineral pitticite has been synthesised. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43−, SO42− and water stretching and bending vibrations. The Raman spectrum of the pitticite analogue shows intense peaks at 845 and 837 cm−1 assigned to the AsO43− stretching vibrations. Raman bands at 1096 and 1182 cm−1 are attributed to the SO42− antisymmetric stretching bands. Raman spectroscopy offers a useful method for the analysis of such colloidal minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although Basin and Range style extension affected several areas of western Mexico since the Late Eocene, extension in the Gulf of California region (the Gulf Extensional Province GEP) is thought to have started as subduction waned and ended at ~14 12.5 Ma. A general consensus also exists in considering the mid Miocene Comondú group as a suprasubduction volcanic arc. Our new integration of the geology of the south east Gulf region, backed by 43 new Ar Ar and U Pb mineral ages and geochemical studies, document a widespread phase of extension in the southern GEP between latest Oligocene and Early Miocene that subsequently focused in the region of the future Gulf in the Middle Miocene. Upper Oligocene to Lower Miocene rocks across the southern Sierra Madre Occidental (SMO)(northern Nayarit and southern Sinaloa) were affected by major ~N S to NNW striking normal faults prior to ~21 Ma. Then, between ~21 and 11 Ma, a system of NNW-SSE high angle extensional faults continued extending the southwestern side of the SMO. Rhyolitic domes, shallow intrusive bodies, and lesser basalts were emplaced along this extensional belt at 20-17 Ma. In northern Sinaloa, large grabens were floored by huge dome complexes at ~21-17 Ma and filled by continental sediments with interlayered basalts dated at 15-14 Ma, a setting and timing very similar to Sonora. Early to Middle Miocene volcanism, including the largely volcaniclastic Comondú strata in Baja California Sur, was thus emplaced in rift basins and was likely associated to decompression melting of upper mantle (inducing crustal partial melting) rather than to fluxing by fluids from the young subducting plate. Along the Nayarit and Sinaloa coast, flatlying basaltic lava flows dated at 11-10 Ma are exposed just above the present sea level. Here, crustal thickness is almost half that in the unextended core of the SMO, implying significant lithosphere stretching before ~11 Ma. Our study shows that rifting began much earlier than Late Miocene and provided a fundamental control on the style and composition of volcanism from at least 30 Ma. We envision a sustained period of lithospheric stretching and magmatism during which the pace and breadth of extension changed at ~20-18 Ma to be narrower and likely more rapid, and again at ~12.5 Ma, when the kinematics of rifting became more oblique.