247 resultados para industry 4.0
Resumo:
Background Food security exists when all people, at all times, have physical, economic and socially acceptable access to safe, sufficient, and adequately nutritious food in order to meet their dietary needs for an active and healthy life. For high income countries and those experiencing the nutrition transition, food security is not only about the quantity of available food but also the nutritional quality as related to over- and under-nutrition. Vietnam is currently undergoing this nutrition transition, and as a result the relationship between food insecurity, socio-demographic factors and weight status is complex. The primary objective of this study was to therefore measure the prevalence of household food insecurity in a disadvantaged urban district in Ho Chi Minh City (HCMC) in Vietnam using a more comprehensive tool. This study also aims to examine the relationships between food insecurity and socio-demographic factors, weight status, and food intakes. Methods A cross-sectional study was conducted using multi-stage sampling. Adults who were mainly responsible for cooking were interviewed in 250 households. Data was collected on socioeconomic and demographic factors using previously validated tools. Food security was assessed using the Latin American and Caribbean Household Food Security Scale (ELCSA) tool and households were categorized as food secure or mildly, moderately or severely food insecure. Questions regarding food intake were based on routinely used and validated questions in HCMC, weight status was self-reported. Results Cronbach’s alpha coefficient was 0.87, showing the ELCSA had a good internal reliability. Approximately 34.4% of households were food insecure. Food insecurity was inversely related to total household income (OR = 0.09, 95% CI = 0.04 - 0.22) and fruit intakes (OR = 2.2, 95% CI 1.31 - 4.22). There was no association between weight and food security status. Conclusions Despite rapid industrialization and modernization, food insecurity remains an important public health issue in large urban areas of HCMC, suggesting that strategies to address food insecurity should be implemented in urban settings, and not just rural locations. Fruit consumption among food insecure households may be compromised because of financial difficulties, which may lead to poorer health outcomes particularly related to non-communicable disease prevention and management.
Resumo:
Background The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn stover leaf and assessed as an additive for two commercial cellulase mixtures for the saccharification of pretreated sugar cane bagasse obtained by different processes. Results Recombinant cellobiohydrolase in the senescent leaves of transgenic corn was extracted using a simple buffer with no concentration step. The extract significantly enhanced the performance of Celluclast 1.5 L (a commercial cellulase mixture) by up to fourfold on sugar cane bagasse pretreated at the pilot scale using a dilute sulfuric acid steam explosion process compared to the commercial cellulase mixture on its own. Also, the extracts were able to enhance the performance of Cellic CTec2 (a commercial cellulase mixture) up to fourfold on a range of residues from sugar cane bagasse pretreated at the laboratory (using acidified ethylene carbonate/ethylene glycol, 1-butyl-3-methylimidazolium chloride, and ball-milling) and pilot (dilute sodium hydroxide and glycerol/hydrochloric acid steam explosion) scales. We have demonstrated using tap water as a solvent (under conditions that mimic an industrial process) extraction of about 90% recombinant cellobiohydrolase from senescent, transgenic corn stover leaf that had minimal tissue disruption. Conclusions The accumulation of recombinant cellobiohydrolase in senescent, transgenic corn stover leaf is a viable strategy to reduce the saccharification cost associated with the production of fermentable sugars from pretreated biomass. We envisage an industrial-scale process in which transgenic plants provide both fibre and biomass-degrading enzymes for pretreatment and enzymatic hydrolysis, respectively.
Resumo:
Increasing threat of terrorism highlights the importance of enhancing the resilience of underground tunnels to all hazards. This paper develops, applies and compares the Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) techniques to treat the response of buried tunnels to surface explosions. The results and outcomes of the two techniques were compared, along with results from existing test data. The comparison shows that the ALE technique is a better method for describing the tunnel response for above ground explosion with regards to modeling accuracy and computational efficiency. The ALE technique was then applied to treat the blast response of different types of segmented bored tunnels buried in dry sand. Results indicate that the most used modern ring type segmented tunnels were more flexible for in-plane response, however, they suffered permanent drifts between the rings. Hexagonal segmented tunnels responded with negligible drifts in the longitudinal direction, but the magnitudes of in-plane drifts were large and hence hazardous for the tunnel. Interlocking segmented tunnels suffered from permanent drifts in both the longitudinal and transverse directions. Multi-surface radial joints in both the hexagonal and interlocking segments affected the flexibility of the tunnel in the transverse direction. The findings offer significant new information in the behavior of segmented bored tunnels to guide their future implementation in civil engineering applications.
Resumo:
This study investigated the diarrhoea seasonality and its potential drivers as well as potential opportunities for future diarrhoea control and prevention in China. Data on weekly infectious diarrhoea cases in 31 provinces of China from 2005 to 2012, and data on demographic and geographic characteristics, as well as climatic factors, were complied. A cosinor function combined with a Poisson regression was used to calculate the three seasonal parameters of diarrhoea in different provinces. Regression tree analysis was used to identify the predictors of diarrhoea seasonality. Diarrhoea cases in China showed a bimodal distribution. Diarrhoea in children <5 years was more likely to peak in fall-winter seasons, while diarrhoea in persons > = 5 years peaked in summer. Latitude was significantly associated with spatial pattern of diarrhoea seasonality, with peak and trough times occurring earlier at high latitudes (northern areas), and later at low latitudes (southern areas). The annual amplitudes of diarrhoea in persons > = 5 years increased with latitude (r = 0.62, P<0.001). Latitude 27.8° N and 38.65° N were the latitudinal thresholds for diarrhoea seasonality in China. Regional-specific diarrhoea control and prevention strategies may be optimal for China. More attention should be paid to diarrhoea in children <5 years during fall-winter seasons.
Resumo:
Staphylococcus aureus (S. aureus) is a prominent human and livestock pathogen investigated widely using omic technologies. Critically, due to availability, low visibility or scattered resources, robust network and statistical contextualisation of the resulting data is generally under-represented. Here, we present novel meta-analyses of freely-accessible molecular network and gene ontology annotation information resources for S. aureus omics data interpretation. Furthermore, through the application of the gene ontology annotation resources we demonstrate their value and ability (or lack-there-of) to summarise and statistically interpret the emergent properties of gene expression and protein abundance changes using publically available data. This analysis provides simple metrics for network selection and demonstrates the availability and impact that gene ontology annotation selection can have on the contextualisation of bacterial omics data.
Resumo:
Map-matching algorithms that utilise road segment connectivity along with other data (i.e.position, speed and heading) in the process of map-matching are normally suitable for high frequency (1 Hz or higher) positioning data from GPS. While applying such map-matching algorithms to low frequency data (such as data from a fleet of private cars, buses or light duty vehicles or smartphones), the performance of these algorithms reduces to in the region of 70% in terms of correct link identification, especially in urban and sub-urban road networks. This level of performance may be insufficient for some real-time Intelligent Transport System (ITS) applications and services such as estimating link travel time and speed from low frequency GPS data. Therefore, this paper develops a new weight-based shortest path and vehicle trajectory aided map-matching (stMM) algorithm that enhances the map-matching of low frequency positioning data on a road map. The well-known A* search algorithm is employed to derive the shortest path between two points while taking into account both link connectivity and turn restrictions at junctions. In the developed stMM algorithm, two additional weights related to the shortest path and vehicle trajectory are considered: one shortest path-based weight is related to the distance along the shortest path and the distance along the vehicle trajectory, while the other is associated with the heading difference of the vehicle trajectory. The developed stMM algorithm is tested using a series of real-world datasets of varying frequencies (i.e. 1 s, 5 s, 30 s, 60 s sampling intervals). A high-accuracy integrated navigation system (a high-grade inertial navigation system and a carrier-phase GPS receiver) is used to measure the accuracy of the developed algorithm. The results suggest that the algorithm identifies 98.9% of the links correctly for every 30 s GPS data. Omitting the information from the shortest path and vehicle trajectory, the accuracy of the algorithm reduces to about 73% in terms of correct link identification. The algorithm can process on average 50 positioning fixes per second making it suitable for real-time ITS applications and services.
Resumo:
Resource assignment and scheduling is a difficult task when job processing times are stochastic, and resources are to be used for both known and unknown demand. To operate effectively within such an environment, several novel strategies are investigated. The first focuses upon the creation of a robust schedule, and utilises the concept of strategically placed idle time (i.e. buffering). The second approach introduces the idea of maintaining a number of free resources at each time, and culminates in another form of strategically placed buffering. The attraction of these approaches is that they are easy to grasp conceptually, and mimic what practitioners already do in practice. Our extensive numerical testing has shown that these techniques ensure more prompt job processing, and reduced job cancellations and waiting time. They are effective in the considered setting and could easily be adapted for many real life problems, for instance those in health care. This article has more importantly demonstrated that integrating the two approaches is a better strategy and will provide an effective stochastic scheduling approach.
Resumo:
Remediation of bisphenol A (BPA) from aqueous solutions by adsorption using organoclays synthesized from montmorillonite (MMT) with different types of organic surfactant molecules was demonstrated. High adsorption capacities of the organoclays for the uptake of BPA were observed and these demonstrated their potential application as strong adsorbents for noxious organic water contaminants. The adsorption of BPA was significantly influenced by pH, with increased adsorption of BPA in acidic pH range. However, the organoclays intercalated with highly loaded surfactants and/or large surfactant molecules were less influenced by the pH of the environment and this was thought to be due to the shielding the negative charge from surfactant molecules and the development of more positive charge on the clay surface, which leads to the attraction of anionic BPA even at alkaline pH. The hydrophobic phase created by loaded surfactant molecules contributed to a partitioning phase, interacting with BPA molecules strongly through hydrophobic interaction. Pseudo-second order kinetic model and Langmuir isotherm provided the best fit for the adsorption of BPA onto the organoclays. In addition, the adsorption process was spontaneous and exothermic with lower temperature facilitating the adsorption of BPA onto the organoclays. The described process provides a potential pathway for the removal of BPA from contaminated waters.
Resumo:
A modified inorganic bentonite (Na/Al) based on purified Ca-bentonite was prepared through exchanging Al and Na ions in the interlayer space of Ca-bentonite. The structural properties of purified and modified bentonites were characterized by XRD and SEM analysis. Batch experiments were performed for the adsorption of ammonium nitrogen and different experimental conditions were studied in order to investigate the optimum adsorption conditions. Comparative experiments were also carried out for natural Ca-bentonite (RB), unmodified purified bentonite (PB) and modified purified bentonite (MB). Through the thermodynamic analysis, the ammonium nitrogen adsorption process can be spontaneous, the standard heat was −41.46kJmol −1 , and the adsorption process based on ion exchange adsorption. The ammonium nitrogen adsorption capacity of MB (46.904mg/g) was improved compared to raw bentonite (RB) (26.631mg/g), which was among the highest values of ammonium nitrogen adsorption compared with other adsorbents according to the literatures. The described process provides a potential pathway for the removal of ammonium nitrogen at low concentrations encountered in most natural waters.
Resumo:
The mineral ushkovite has been analyzed using a combination of electron microscopy with EDX and vibrational spectroscopy. Chemical analysis shows the mineral contains P, Mg with very minor Fe. Thus, the formula of the studied ushkovite is Mg32+(PO4)2·8H2O. The Raman spectrum shows an intense band at 953 cm−1 assigned to the ν1 symmetric stretching mode. In the infrared spectra complexity exists with multiple antisymmetric stretching vibrations observed, due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong infrared bands around 827 cm−1 are attributed to water librational modes. The Raman spectra of the hydroxyl-stretching region are complex with overlapping broad bands. Hydroxyl stretching vibrations are identified at 2881, 2998, 3107, 3203, 3284 and 3457 cm−1. The wavenumber band at 3457 cm−1 is attributed to the presence of FeOH groups. This complexity is reflected in the water HOH bending modes where a strong infrared band centered around 1653 cm−1 is found. Such a band reflects the strong hydrogen bonding of the water molecules to the phosphate anions in adjacent layers. Spectra show three distinct OH bending bands from strongly hydrogen-bonded, weakly hydrogen bonded water and non-hydrogen bonded water. Vibrational spectroscopy enhances our knowledge of the molecular structure of ushkovite.
Resumo:
We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088cm(-1) provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.
Resumo:
A series of novel thermo-responsive composite sorbents, were prepared by free-radical co-polymerization of N-isopropylacrylamide (NIPAm) and the silylanized Mg/Al layered double hydroxides (SiLDHs), named as PNIPAm-co-SiLDHs. For keeping the high affinity of Mg/Al layered double hydroxides towards anions, the layered structure of LDHs was assumed to be reserved in PNIPAm-co-SiLDHs by the silanization of the wet LDH plates as evidenced by the X-ray powder diffraction. The sorption capacity of PNIPAm-co-SiLDH (13.5 mg/g) for Orange-II from water was found to be seven times higher than that of PNIPAm (2.0 mg/g), and the sorption capacities of arsenate onto PNIPAm-co-SiLDH are also greater than that onto PNIPAm, for both As(III) and As(V). These sorption results suggest that reserved LDH structure played a significant role in enhancing the sorption capacities. NO3− intercalated LDHs composite showed the stronger sorption capacity for Orange-II than that of CO32−. After sorption, the PNIPAm-co-SiLDH may be removed from water because of its gel-like nature, and may be easily regenerated contributing to the accelerated desorption of anionic contaminants from PNIPAm-co-SiLDHs by the unique phase-transfer feature through slightly heating (to 40 °C). These recyclable and regeneratable properties of thermo-responsive nanocomposites facilitate its potential application in the in-situ remediation of organic and inorganic anions from contaminated water.
Resumo:
Recently, studies have identified high zinc levels in various environmental resources, and excessive intake of zinc has long been considered to be harmful to human health. The aim of this research was to investigate the effectiveness of tricalcium aluminate (C3A) as a removal agent of zinc from aqueous solution. Inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to characterize such removal behavior. The effects of various factors such as pH influence, temperature and contact time were investigated. The adsorption capacity of C3A for Zn2+ was computed to be up to 13.73 mmol g−1, and the highest zinc removal capacity was obtained when the initial pH of Zn(NO3)2 solution was between 6.0 and 7.0, with temperature around 308 K. The XRD analysis showed that the resultant products were ZnAl-LDHs. Combined with the analysis of solution component, it was proved the existence of both precipitation and cation exchange in the removal process. From the experimental results, it was clear that C3A could be potentially used as a cost-effective material for the removal of zinc in aqueous environment.
Resumo:
The surfaces of natural beidellite clay were modified with cationic surfactant, tetradecyltrimethylammonium bromide, at different concentrations. The organo-beidellites were analysed using thermogravimetric analysis which shows four thermal oxidation/decomposition steps. The first step of mass loss is observed from room temperature to 130 °C due to the dehydration of adsorbed water. The second step of mass loss between 130 and 400 °C is attributed to the oxidation step of the intercalated organic surfactant with the formation of charcoal. The third mass loss happens between 400 and 500 °C which is assigned to the loss of hydroxyl groups on the edge of clays and the further oxidation step of charcoal. The fourth step is ascribed to the loss of structural OH units as well as the final oxidation/decomposition step of charcoal which takes place between 500 and 700 °C. Thermogravimetric analysis has proven to be a useful tool for estimating loaded surfactant amount.
Resumo:
We have studied the borate mineral szaibelyite MgBO2(OH) using electron microscopy and vibrational spectroscopy. EDS spectra show a phase composed of Mg with minor amounts of Fe. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1099 cm−1 with a shoulder band at 1093 cm−1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm−1 are attributed to the BOH in-plane bending modes. Raman bands at 836 and 988 cm−1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The infrared bands at 3559 and 3547 cm−1 are assigned to hydroxyl stretching vibrations. Broad infrared bands at 3269 and 3398 cm−1 are assigned to water stretching vibrations. Infrared bands at 1306, 1352, 1391, 1437 cm−1 are assigned to the antisymmetric stretching vibrations of trigonal boron. Vibrational spectroscopy enables aspects of the molecular structure of the borate mineral szaibelyite to be assessed.