284 resultados para hot-air balloons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerically investigation of free convection within a porous cavity with differential heating has been performed using modified corrugated side walls. Sinusoidal hot left and cold right walls are assumed to receive sudden differentially heating where top and bottom walls are insulated. Air is considered as working fluid and is quiescent, initially. Numerical experiments reveal 3 distinct stages of developing pattern including initial stage, oscillatory intermediate and finally steady state condition. Implicit Finite Volume Method with TDMA solver is used to solve the governing equations. This study has been performed for the Rayleigh numbers ranging from 100 to 10,000. Outcomes have been reported in terms of isotherms, streamline, velocity and temperature plots and average Nusselt number for various Ra, corrugation frequency and corrugation amplitude. The effects of sudden differential heating and its resultant transient behavior on fluid flow and heat transfer characteristics have been shown for the range of governing parameters. The present results show that the transient phenomena are enormously influenced by the variation of the Rayleigh Number with corrugation amplitude and frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, 17-polychlorinated dibenzo-pdioxin/furan (PCDD/Fs) isomers were measured in ambient air at four urban sites in Seoul, Korea (from February to June 2009). The concentrations of their summed values RPCDD/Fs) across all four sites ranged from 1,947 (271 WHO05 TEQ) (Jong Ro) to 2,600 (349 WHO05 TEQ) fg/m3 (Yang Jae) with a mean of 2,125 ± 317) fg/m3 (292 WHO05 TEQ fg/m3). The sum values for the two isomer groups of RPCDD and RPCDF were 527 (30 WHO05 TEQ) and 1,598 (263 WHO05 TEQ) fg/m3, respectively. The concentration profile of individual species was dominated by the 2,3,4,7,8-PeCDF isomer, which contributed approximately 36 % of the RPCDD/Fs value. The observed temporal trends in PCDD/F concentrations were characterized by relative enhancement in the winter and spring. The relative contribution of different sources, when assessed by principal component analysis, is explained by the dominance of vehicular emissions along with coal (or gas) burning as the key source of ambient PCDD/Fs in the residential areas studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passenger experience has become a major factor that influences the success of an airport. In this context, passenger flow simulation has been used in designing and managing airports. However, most passenger flow simulations failed to consider the group dynamics when developing passenger flow models. In this paper, an agent-based model is presented to simulate passenger behaviour at the airport check-in and evacuation process. The simulation results show that the passenger behaviour can have significant influences on the performance and utilisation of services in airport terminals. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cougars, Grannies, Evil Stepmothers, and Menopausal Hot Flashers: Roles, Representations of Age and the Non-traditional Romance Heroine is an examination of the stereotyped roles of age and the under-representation of women over forty as worthy protagonists in romance fiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We model the hazard rate for car ownership spells. Our model allows us to distinguish among different types of adverse selection effects by observing the type of unobserved heterogeneity across owners of the same car. Our empirical results strongly suggest that there is a lemons effect because there is significant unobserved heterogeneity. However, they also suggest that the lemons effect is caused by the first owner rather than the manufacturer. Had the manufacturer created the lemon, the unobserved heterogeneity would be positively correlated over all owners of a given car. Instead we observe a negative correlation between the unobserved heterogeneity term for the first owner and the unobserved heterogeneity term for subsequent owners. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanoflakes (CNFLs) are synthesized on silicon substrates deposited with carbon islands in a methane environment using hot filament chemical vapor deposition. The structure and composition of the CNFLs are studied using field emission scanning electron microscopy, high-resolution transmission electron microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicate that the CNFLs are composed of multilayer graphitic sheets and the area and thickness of CNFs increase with the growth time. The photoluminescence (PL) of CNFLs excited by a 325 nm He-Cd laser exhibits three strong bands centered at 408, 526, and 699 nm, which are related to the chemical radicals terminated on the CNFLs and the associated interband transitions. The PL results indicate that the CNFLs are promising as an advanced nano-carbon material capable of generating white light emission. These outcomes are significant to control the electronic structure of CNFLs and contribute to the development of next-generation solid-state white light emission devices. © 2014 the Partner Organisations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene films with different structures were catalytically grown on the silicon substrate pre-deposited with a gold film by hot filament chemical vapor deposition under different conditions, where methane, hydrogen and nitrogen were used as the reactive gases. The morphological and compositional properties of graphene films were studied using advanced instruments including field emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structure and composition of graphene films are changed with the variation of the growth conditions. According to the theory related to thermodynamics, the formation of graphene films was theoretically analyzed and the results indicate that the formation of graphene films is related to the fast incorporation and precipitation of carbon. The electron field emission (EFE) properties of graphene films were studied in a high vacuum system of ∼10-6 Pa and the EFE results show that the turn-on field is in a range of 5.2-5.64 V μm-1 and the maximum current density is about 63 μ A cm-2 at the field of 7.7 V μm-1. These results are important to control the structure of graphene films and have the potential applications of graphene in various nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanorods and graphene-like nanosheets are catalytically synthesized in a hot filament chemical vapor deposition system with and without plasma enhancement, with gold used as a catalyst. The morphological and structural properties of the carbon nanorods and nanosheets are investigated by field-emission scanning electron microscopy, transmission electron microscopy and micro-Raman spectroscopy. It is found that carbon nanorods are formed when a CH4 + H2 + N2 plasma is present while carbon nanosheets are formed in a methane environment without a plasma. The formation of carbon nanorods and carbon nanosheets are analyzed. The results suggest that the formation of carbon nanorods is primarily a precipitation process while the formation of carbon nanosheets is a complex process involving surface-catalysis, surface diffusion and precipitation influenced by the Gibbs–Thomson effect. The electron field emission properties of the carbon nanorods and graphene-like nanosheets are measured under high-vacuum; it is found that the carbon nanosheets have a lower field emission turn-on than the carbon nanorods. These results are important to improve the understanding of formation mechanisms of carbon nanomaterials and contribute to eventual applications of these structures in nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasmaglow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasmaglow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective biofilm inactivation using a handheld, mobile plasma jet powered by a 12 V dc battery and operated in open air without any external gas supply is reported. This cold, room-temperature plasma is produced in self-repetitive nanosecond discharges with current pulses of ~100 ns duration, current peak amplitude of ~6 mA and repetition rate of ~20 kHz. It is shown that the reactive plasma species penetrate to the bottom layer of a 25.5 µm-thick Enterococcus faecalis biofilm and produce a strong bactericidal effect. This is the thickest reported biofilm inactivated using room-temperature air plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of various discharge parameters and ambient gas on the length of He atmospheric plasma jet plumes expanding into the open air are studied. It is found that the voltage and width of the discharge-sustaining pulses exert significantly stronger effects on the plume length than the pulse frequency, gas flow rate, and nozzle diameter. This result is explained through detailed analysis of the I-V characteristics of the primary and secondary discharges which reveals the major role of the integrated total charges of the primary discharge in the plasma dynamics. The length of the jet plume can be significantly increased by guiding the propagating plume into a glass tube attached to the nozzle. This increase is attributed to elimination of the diffusion of surrounding air into the plasma plume, an absence which facilitates the propagation of the ionization front. These results are important for establishing a good level of understanding of the expansion dynamics and for enabling a high degree of control of atmospheric pressure plasmas in biomedical, materials synthesis and processing, environmental and other existing and emerging industrial applications. © 2009 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years air pollution has been referred to as an ‘invisible killer’, and ‘an invisible health crisis’ (European Respiratory Society 2012). As other chapters in this collection have argued, the invisibility of crime is manifested through various lenses: lack of knowledge, lack of political and media attention, an absence of policing and regulatory focus, and an unwitting and ill-informed public. All such arguments pertain to air pollution; however, toxic emissions are also literally invisible from sight and consciousness, as are the associated consequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corona discharge is responsible for the flux of small ions from overhead power lines, and is capable of modifying the ambient electrical environment, such as the air ion concentrations at ground level. Once produced, small ions quickly attach to aerosol particles in the air, producing ‘large ions’, approximately 1 nm to 1 µm in diameter. However, very few studies have measured air ion concentrations directly near high voltage transmission lines. The present study involved the simultaneously measurement of small ion concentration and net large ion concentration using air ion counters and an aerosol electrometer at four power line sites. Both positive and negative small ion concentration (<1.6nm), net large ion concentration (2nm-5μm) and particle number concentration (10nm-2μm) were measured using air ion counters and an aerosol electrometer at four power line sites. Measurements at sites 1 and 2 were conducted at both upwind and downwind sides. The results showed that total ion concentrations on the downwind side were 3-5 times higher than on the upwind side, while particle number concentrations did not show a significant difference. This result also shows that a large number of ions were emitted from the power lines at sites 1 and 2. Furthermore, both positive and negative ions were observed at different power line sites. Dominant positive ions were observed at site 1, with a concentration of 4.4 x 103 ions cm-3, which was 10 times higher than on the upwind side. Contrary to site 1, sites 2 to 4 showed negative ion emissions, with concentrations of -1.2 x 103, -460 and -410 ions cm-3, respectively. These values were higher than the background urban negative ion concentration of 400 cm-3. At site 1 and site 2, the net ion concentration and net particle charge concentration on downwind side of the lines showed same polarities. Further investigations were also conducted into the correlation between net ion concentration and net charge particle concentration 20 m downwind of the power lines at site 2. The two parameters showed a correlation coefficient of 0.72, indicating that a substantial number of ions could attach to particles and affect the particle charge status within a short distance from the source.