265 resultados para computer science education
Resumo:
This workshop was supported by the Australian Centre for Ecological Analysis and Synthesis (ACEAS, http://www.aceas.org.au/), a facility of the Australian Government-funded Terrestrial Ecosystem Research Network (http://www.tern.org.au/), a research infrastructure facility established under the National Collaborative Research Infrastructure Strategy and Education Infrastructure Fund - Super Science Initiative, through the Department of Industry, Innovation, Science, Research and Tertiary Education. Hosted by: Queensland University of Technology, Brisbane, Queensland. (QUT, http://www.qut.edu.au/) Dates: 8-11 May 2012 Report Editors: Prof Stuart Parsons (Uni. Auckland, NZ) and Dr Michael Towsey (QUT). This report is a compilation of notes and discussion summaries contributed by those attending the Workshop. They have been assembled into a logical order by the editors. Another report (with photographs) can be obtained at: http://www.aceas.org.au/index.php?option=com_content&view=article&id=94&Itemid=96
Resumo:
This chapter profiles research that has explored the role of affect in the teaching of science in Australia particularly on primary or elementary science education. Affect is a complex set of characteristics that relate to the interactions between an individual’s knowledge and emotional responses to a stimulus. Thus, there are many dimensions and theoretical frameworks that inform our understanding of how and why people behave in particular ways.
Resumo:
In this research paper, we study a simple programming problem that only requires knowledge of variables and assignment statements, and yet we found that some early novice programmers had difficulty solving the problem. We also present data from think aloud studies which demonstrate the nature of those difficulties. We interpret our data within a neo-Piagetian framework which describes cognitive developmental stages through which students pass as they learn to program. We describe in detail think aloud sessions with novices who reason at the neo-Piagetian preoperational level. Those students exhibit two problems. First, they focus on very small parts of the code and lose sight of the "big picture". Second, they are prone to focus on superficial aspects of the task that are not functionally central to the solution. It is not until the transition into the concrete operational stage that decentration of focus occurs, and they have the cognitive ability to reason about abstract quantities that are conserved, and are equipped to adapt skills to closely related tasks. Our results, and the neo-Piagetian framework on which they are based, suggest that changes are necessary in teaching practice to better support novices who have not reached the concrete operational stage.
Resumo:
Recent research from within a neo-Piagetian perspective proposes that novice programmers pass through the sensorimotor and preoperational stages before being able to reason at the concrete operational stage. However, academics traditionally teach and assess introductory programming as if students commence at the concrete operational stage. In this paper, we present results from a series of think aloud sessions with a single student, known by the pseudonym “Donald”. We conducted the sessions mainly over one semester, with an additional session three semesters later. Donald first manifested predominately sensorimotor reasoning, followed by preoperational reasoning, and finally concrete operational reasoning. This longitudinal think aloud study of Donald is the first direct observational evidence of a novice programmer progressing through the neo-Piagetian stages.
Resumo:
BACKGROUND Research on engineering design is a core area of concern within engineering education and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. Understanding the factors related to design experiences in education and how they affect student practice can help educators as well as designers to leverage these factors as part of the design process. PURPOSE This study investigated the design practices of first-year engineering students’ and their experiences with a first-year engineering course design project. The research questions that guided the investigation were: 1. From a student perspective, what design parameters or criteria are most important? 2. How does this perspective impact subsequent student design practice throughout the design process? DESIGN/METHOD The authors employed qualitative multi-case study methods (Miles & Huberman, 1994) in order to the answer the research questions. Participant teams were observed and video recorded during team design meetings in which they researched the background for the design problem, brainstormed and sketched possible solutions, as well as built prototypes and final models of their design solutions as part of a course design project. Analysis focused on explanation building (Yin, 2009) and utilized within-case and cross-case analysis (Miles & Huberman, 1994). RESULTS We found that students focused disproportionally on the functional parameter, i.e. the physical implementation of their solution, and the possible/applicable parameter, i.e. a possible and applicable solution that benefited the user, in comparison to other given parameters such as safety and innovativeness. In addition, we found that individual teams focused on the functional and possible/ applicable parameters in early design phases such as brainstorming/ ideation and sketching. When prompted to discuss these non-salient parameters (from the student perspective) in the final design report, student design teams often used a post-hoc justification to support how the final designs fit the parameters that they did not initially consider. CONCLUSIONS This study suggests is that student design teams become fixated on (and consequently prioritize) certain parameters they interpret as important because they feel these parameters were described more explicitly in terms how they were met and assessed. Students fail to consider other parameters, perceived to be less directly assessable, unless prompted to do so. Failure to consider other parameters in the early design phases subsequently affects their approach in design phases as well. Case studies examining students’ study strategies within three Australian Universities illustrate similarities with some student approaches to design.
Resumo:
Social networking sites (SNSs), with their large numbers of users and large information base, seem to be perfect breeding grounds for exploiting the vulnerabilities of people, the weakest link in security. Deceiving, persuading, or influencing people to provide information or to perform an action that will benefit the attacker is known as “social engineering.” While technology-based security has been addressed by research and may be well understood, social engineering is more challenging to understand and manage, especially in new environments such as SNSs, owing to some factors of SNSs that reduce the ability of users to detect the attack and increase the ability of attackers to launch it. This work will contribute to the knowledge of social engineering by presenting the first two conceptual models of social engineering attacks in SNSs. Phase-based and source-based models are presented, along with an intensive and comprehensive overview of different aspects of social engineering threats in SNSs.
Resumo:
This thesis developed a method for real-time and handheld 3D temperature mapping using a combination of off-the-shelf devices and efficient computer algorithms. It contributes a new sensing and data processing framework to the science of 3D thermography, unlocking its potential for application areas such as building energy auditing and industrial monitoring. New techniques for the precise calibration of multi-sensor configurations were developed, along with several algorithms that ensure both accurate and comprehensive surface temperature estimates can be made for rich 3D models as they are generated by a non-expert user.
Resumo:
Emotions are inherently social, and are central to learning, online interaction and literacy practices (Shen, Wang, & Shen, 2009). Demonstrating the dynamic sociality of literacy practice, we used e-motion diaries or web logs to explore the emotional states of pre-service high school teachers’ experiences of online learning activities. This is because the methods of communication used by university educators in online learning and writing environments play an important role in fulfilling students’ need for social interaction and inclusion (McInnerney & Roberts, 2004). Feelings of isolation and frustration are common emotions experienced by students in many online learning environments, and are associated with the success or failure of online interactions and learning (Su, et al., 2005). The purpose of the study was to answer the research question: What are the trajectories of pre-service teachers’ emotional states during online learning experiences? This is important because emotions are central to learning, and the current trend toward Massive Open Online Courses (MOOCs) needs research about students’ emotional connections in online learning environments (Kop, 2011). The project was conducted with a graduate class of 64 high school science pre-service teachers in Science Education Curriculum Studies in a large Australian university, including males and females from a variety of cultural backgrounds, aged 22-55 years. Online activities involved the students watching a series of streamed live lectures for the first 5 weeks providing a varied set of learning experiences, such as viewing science demonstrations (e.g., modeling the use of discrepant events). Each week, students provided feedback on learning by writing and posting an e-motion diary or web log about their emotional response. Students answered the question: What emotions did you experience during this learning experience? The descriptive data set included 284 online posts, with students contributing multiple entries. Linguistic appraisal theory, following Martin and White (2005), was used to regroup the 22 different discrete emotions reported by students into the six main affect groups – three positive and three negative: unhappiness/happiness, insecurity/security, and dissatisfaction/satisfaction. The findings demonstrated that the pre-service teachers’ emotional responses to the streamed lectures tended towards happiness, security, and satisfaction within the typology of affect groups – un/happiness, in/security, and dis/satisfaction. Fewer students reported that the streamed lectures triggered negative feelings of frustration, powerlessness, and inadequacy, and when this occurred, it often pertained to expectations of themselves in the forthcoming field experience in classrooms. Exceptions to this pattern of responses occurred in relation to the fifth streamed lecture presented in a non-interactive slideshow format that compressed a large amount of content. Many students responded to the content of the lecture rather than providing their emotional responses to this lecture, and one student felt “completely disengaged”. The social practice of online writing as blogs enabled the students to articulate their emotions. The findings primarily contribute new understanding about students' wide range of differing emotional states, both positive and negative, experienced in response to streamed live lectures and other learning activities in higher education external coursework. The is important because the majority of previous studies have focused on particular negative emotions, such as anxiety in test taking. The research also highlights the potentials of appraisal theory for studying human emotions in online learning and writing.
Resumo:
This paper reports findings from an Australian survey of Year 10 students (N=3759) indicating that those in small rural and remote areas tend to enjoy school science significantly less than their peers in larger towns and cities (Lyons & Quinn, 2010). The study also found that rural and remote students were less inclined than those in other locations to enjoy science relative to other subjects. Such a result has not previously been recorded in the science education literature and raises a number of questions about the relevance and quality of the science education experienced by rural and remote students. It also raises timely questions about the applicability to rural and remote students of an Australian Science Curriculum. The paper explores these issues and their implications for policy and research.
Resumo:
Young people’s participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under-represented in many STEM fields. This article views international research about young people’s relationships to, and participation in, STEM subjects and careers through the lens of an expectancy value model of achievement-related choices. In addition it draws on sociological theories of late-modernity and identity, which situate decision-making in a cultural context. The article examines how these frameworks are useful in explaining the decisions of young people – and young women in particular – about participating in STEM and proposes possible strategies for removing barriers to participation.
Resumo:
Disproportionate representation of males and females in science courses and careers continues to be of concern. This article explores gender differences in Australian high school students’ perceptions of school science and their intentions to study university science courses. Nearly 3800 15-year-old students responded to a range of 5-point Likert items relating to intentions to study science at university, perceptions of career-related instrumental issues such as remuneration and job security, self-rated science ability and enjoyment of school science. Australian boys and girls reported enjoying science to a similar extent, however boys reported enjoying it more in relation to other subjects than did girls, and rated their ability in science compared to others in their class more highly than did girls. There was no significant difference between the mean responses of girls and boys to the item “It is likely I will choose a science-related university course when I leave school” and the strongest predictors of responses to this item were items relating to students’ liking for school science and awareness from school science of new and exciting jobs, followed by their perceived self-ability. These results are discussed in relation to socio-scientific values that interact with identity and career choices, employment prospects in science, and implications for science education.
Resumo:
Research on the achievement and retention of female students in science and mathematics is located within a context of falling levels of participation in physical science and mathematics courses in Australian schools, and underrepresentation of females in some science, technology, engineering and mathematics (STEM) courses. The Interests and Recruitment in Science (IRIS) project is an international project that aims to contribute to understanding and improving recruitment, retention and gender equity in STEM higher education. Nearly 3500 first year students in 30 Australian universities responded to the IRIS survey of 5-point Likert items and open responses. This paper explores gender differences in first year university students’ responses to three questions about important influences on their course choice. The IRIS study found good teachers were rated highly by both males and females as influential in choosing STEM courses, and significantly higher numbers of females rated personal encouragement from senior high school science teacher as very important. In suggestions for addressing sex disparities in male-dominated STEM courses, more females indicated the importance of good teaching/encouragement and more females said (unspecified) encouragement. This study relates to the influence of school science teachers and results are discussed in relation to implications for science education.
Resumo:
This paper reports results from a study comparing teachers’ and students’ perceptions about the relative degree of influence parents, teachers, friends, older students and careers advisors have on students’ decisions about enrolling in non-compulsory high school science subjects. The comparison was carried out as part of the Choosing Science project - a large-scale Australian study of 15 year-old students’ experiences of school science and intentions regarding further participation. The study found that students considered their science teachers to have had the greatest influence, followed by parents and then friends. In contrast, however, science teachers believed their students to be most influenced in their decisions by friends and peers, followed by older students and siblings and parents, with teachers themselves having relatively little influence. Both groups believed that advice from careers advisors was of little influence. The findings are unique in the science education literature in providing an insight into differences and similarities in the perceptions of students and their teachers. In particular they indicate that teachers play a far greater role in students’ decisions about enrolling in science than they believe. This has important implications for science teachers and teacher educators in terms of appreciating their influence and applying it in ways that encourage participation in science courses.
Resumo:
This paper explores issues of gender in Year 10 Australian students‘ experiences of science at school, their self-reported ability in science and their perceptions of science as a subject choice for senior secondary school. A sample of 3759 Year 10 students from across Australia responded to Likert-style questions related to these issues, with findings showing gender differences in perceptions of science, self-rated ability, and reasons for choosing not to study further science. Moreover, interesting contrasts were revealed in patterns of difference of self-rated ability for boys and girls across single-sex and co-educational schools.