341 resultados para capital flow
Resumo:
Natural convection thermal boundary layer adjacent to the heated inclined wall of a right angled triangle with an adiabatic fin attached to that surface is investigated by numerical simulations. The finite volume based unsteady numerical model is adopted for the simulation. It is revealed from the numerical results that the development of the boundary layer along the inclined surface is characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady stage. These three stages can be clearly identified from the numerical simulations. Moreover, in presence of adiabatic fin, the thermal boundary layer adjacent to the inclined wall breaks initially. However, it is reattached with the downstream boundary layer next to the fin. More attention has been given to the boundary layer development near the fin area.
Resumo:
To fumigate grain stored in a silo, phosphine gas is distributed by a combination of diffusion and fan-forced advection. This initial study of the problem mainly focuses on the advection, numerically modelled as fluid flow in a porous medium. We find satisfactory agreement between the flow predictions of two Computational Fluid Dynamics packages, Comsol and Fluent. The flow predictions demonstrate that the highest velocity (>0.1 m/s) occurs less than 0.2m from the inlet and reduces drastically over one metre of silo height, with the flow elsewhere less than 0.002 m/s or 1% of the velocity injection. The flow predictions are examined to identify silo regions where phosphine dosage levels are likely to be too low for effective grain fumigation.
Resumo:
Studies of Heritage Language learners‟ commitment and their ethnic identity are increasing, yet there is scant sociological research addressing topics relating to Chinese Heritage Language learners. Drawing on Bourdieu‟s signature notions of „habitus‟, „capital‟, and „field‟, this mixed methods study investigates two problems: (1) impacts of “Chineseness” and accessible resources on Chinese Heritage Language proficiency of young Chinese Australian adults in urban Australia; and (2) the meanings of Chinese Heritage Language to these young people.
Resumo:
Numerical study is carried out using large eddy simulation to study the heat and toxic gases released from fires in real road tunnels. Due to disasters about tunnel fires in previous decade, it attracts increasing attention of researchers to create safe and reliable ventilation designs. In this research, a real tunnel with 10 MW fire (which approximately equals to the heat output speed of a burning bus) at the middle of tunnel is simulated using FDS (Fire Dynamic Simulator) for different ventilation velocities. Carbone monoxide concentration and temperature vertical profiles are shown for various locations to explore the flow field. It is found that, with the increase of the longitudinal ventilation velocity, the vertical profile gradients of CO concentration and smoke temperature were shown to be both reduced. However, a relatively large longitudinal ventilation velocity leads to a high similarity between the vertical profile of CO volume concentration and that of temperature rise.
Resumo:
The problem of MHD natural convection boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed in the presence of strong cross magnetic field with radiative heat transfer. In the analysis radiative heat flux is considered by adopting optically thick radiation limit. Attempt is made to obtain the solutions valid for liquid metals by taking Pr≪1. Boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation (SFF) and primitive variable formulation (PVF). Non-similar equations obtained from SFF are then simulated by implicit finite difference (Keller-box) method whereas parabolic partial differential equations obtained from PVF are integrated numerically by hiring direct finite difference method over the entire range of local Hartmann parameter, $xi$ . Further, asymptotic solutions are also obtained for large and small values of local Hartmann parameter $xi$ . A favorable agreement is found between the results for small, large and all values of $xi$ . Numerical results are also demonstrated graphically by showing the effect of various physical parameters on shear stress, rate of heat transfer, velocity and temperature.
Resumo:
Waste management and minimisation is considered to be an important issue for achieving sustainability in the construction industry. Retrofit projects generate less waste than demolitions and new builds, but they possess unique features and require waste management approaches that are different to traditional new builds. With the increasing demand for more energy efficient and environmentally sustainable office spaces, the office building retrofit market is growing in capital cities around Australia with a high level of refurbishment needed for existing aging properties. Restricted site space and uncertain delivery process in these projects make it a major challenge to manage waste effectively. The labour-intensive nature of retrofit projects creates the need for the involvement of small and medium enterprises (SMEs) as subcontractors in on-site works. SMEs are familiar with on-site waste generation but are not as actively motivated and engaged in waste management activities as the stakeholders in other construction projects in the industry. SMEs’ responsibilities for waste management in office building retrofit projects need to be identified and adapted to the work delivery processes and the waste management system supported by project stakeholders. The existing literature provides an understanding of how to manage construction waste that is already generated and how to increase the waste recovery rate for office building retrofit projects. However, previous research has not developed theories or practical solutions that can guide project stakeholders to understand the specific waste generation process and effectively plan for and manage waste in ongoing project works. No appropriate method has been established for the potential role and capability of SMEs to manage and minimise waste from their subcontracting works. This research probes into the characteristics of office building retrofit project delivery with the aim to develop specific tools to manage waste and incorporate SMEs in this process in an appropriate and effective way. Based on an extensive literature review, the research firstly developed a questionnaire survey to identify the critical factors of on-site waste generation in office building retrofit projects. Semi-structured interviews were then utilised to validate the critical waste factors and establish the interrelationships between the factors. The interviews served another important function of identifying the current problems of waste management in the industry and the performance of SMEs in this area. Interviewees’ opinions on remedies to the problems were also collected. On the foundation of the findings from the questionnaire survey and semi-structured interviews, two waste planning and management strategies were identified for the dismantling phase and fit-out phase of office building retrofit projects, respectively. Two models were then established to organize SMEs’ waste management activities, including a work process-based integrated waste planning model for the dismantling phase and a system dynamics model for the fit-out phase. In order to apply the models in real practice, procedures were developed to guide SMEs’ work flow in on-site waste planning and management. In addition, a collaboration framework was established for SMEs and other project stakeholders for effective waste planning and management. Furthermore, an organisational engagement strategy was developed to improve SME waste management practices. Three case studies were conducted to validate and finalise the research deliverables. This research extends the current literature that mostly covers waste management plans in new build projects, by presenting the knowledge and understanding of addressing waste problems in retrofit projects. It provides practical tools and guidance for industry practitioners to effectively manage the waste generation processes in office building retrofit projects. It can also promote industry-level recognition of the role of SMEs and their performance in on-site waste management.
Resumo:
In present work, numerical solution is performed to study the confined flow of power-law non Newtonian fluids over a rotating cylinder. The main purpose is to evaluate drag and thermal coefficients as functions of the related governing dimensionless parameters, namely, power-law index (0.5 ≤ n ≤ 1.4), dimensionless rotational velocity (0 ≤ α ≤ 6) and the Reynolds number (100 ≤ Re ≤ 500). Over the range of Reynolds number, the flow is known to be steady. Results denoted that the increment of power law index and rotational velocity increases the drag coefficient due to momentum diffusivity improvement which is responsible for low rate of heat transfer, because the thicker the boundary layer, the lower the heat transfer is implemented.
Resumo:
In this study, natural convection boundary layer flow of thermally radiating fluid along a heated vertical wavy surface is analyzed. Here, the radiative component of heat flux emulates the surface temperature. Governing equations are reduced to dimensionless form, subject to the appropriate transformation. Resulting dimensionless equations are transformed to a set of parabolic partial differential equations by using primitive variable formulation, which are then integrated numerically via iterative finite difference scheme. Emphasis has been given to low Prandtl number fluid. The numerical results obtained for the physical parameters, such as, surface radiation parameter, R, and radiative length parameter, ξ, are discussed in terms of local skin friction and Nusselt number coefficients. Comprehensive interpretation of velocity distribution is also given in the form of streamlines.
Resumo:
The effect of conduction-convection-radiation on natural convection flow of Newtonian optically thick gray fluid, confined in a non-Darcian porous media square cavity is numerically studied. For the gray fluid consideration is given to Rosseland diffusion approximation. Further assuming that (i) the temperature of the left vertical wall is varying linearly with height, (ii) cooled right vertical and top walls and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the Alternate Direct Implicit method together with the Successive Over Relaxation technique. The investigation of the effect of governing parameters namely the Forschheimer resistance (Γ), the Planck constant (Rd), and the temperature difference (Δ), on flow pattern and heat transfer characteristics has been carried out. It was seen that the reduction of flow and heat transfer occurs as the Forschheimer resistance is increased. On the other hand both the strength of flow and heat transfer increases as the temperature ratio, Δ, is increased.
Resumo:
This chapter represents the analytical solution of two-dimensional linear stretching sheet problem involving a non-Newtonian liquid and suction by (a) invoking the boundary layer approximation and (b) using this result to solve the stretching sheet problem without using boundary layer approximation. The basic boundary layer equations for momentum, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The results reveal a new analytical procedure for solving the boundary layer equations arising in a linear stretching sheet problem involving a non-Newtonian liquid (Walters’ liquid B). The present study throws light on the analytical solution of a class of boundary layer equations arising in the stretching sheet problem.
Resumo:
The steady problem of free surface flow due to a submerged line source is revisited for the case in which the fluid depth is finite and there is a stagnation point on the free surface directly above the source. Both the strength of the source and the fluid speed in the far field are measured by a dimensionless parameter, the Froude number. By applying techniques in exponential asymptotics, it is shown that there is a train of periodic waves on the surface of the fluid with an amplitude which is exponentially small in the limit that the Froude number vanishes. This study clarifies that periodic waves do form for flows due to a source, contrary to a suggestion by Chapman & Vanden-Broeck (2006, J. Fluid Mech., 567, 299--326). The exponentially small nature of the waves means they appear beyond all orders of the original power series expansion; this result explains why attempts at describing these flows using a finite number of terms in an algebraic power series incorrectly predict a flat free surface in the far field.
Resumo:
The development of creative industries has been connected to urban development since the end of the 20th century. However, the causality of why creative industries always cluster and develop in certain cities hasn‘t been adequately demonstrated, especially as to how various resources grow, interact and nurture the creative capacity of the locality. Therefore it is vital to observe how the local institutional environment nurtures creative industries and how creative industries consequently change the environment in order to better address the connection between creative industries and localities. In Beijing, the relocation of CCTV, BTV and Phoenix to Chaoyang District raises the possibility of a new era for Chinese media, one in which the stodginess of propaganda content will give way to exciting new forms and genres. The mixing of media companies in an open commercial environment (away from the political power district of Xicheng) holds the promise of more freedom of expression and, ultimately, to a =media capital‘ (Curtin, 2003). These are the dreams of many media practitioners in Beijing. But just how realistic are their expectations? This study adopts the concept of =media capital‘ to demonstrate how participants, including state-media organisations, private media companies and international media conglomerates, are seeking out space and networks to survive in Beijing. Drawing on policy analysis, interviews and case studies, this study illustrates how different agents meet, confront and adapt in Beijing. This study identifies factors responsible for the media industries clustering in China, and argues that Beijing is very likely to be the next Chinese media capital, after enough accumulation and development, although as a lower tier version compared to other media capitals in the world. This study contributes to Curtin‘s =media capital‘ concept, develops his interpretation on the relationship of media industries and the government, and suggests that the influence over the government of media companies and professionals should be acknowledged. Therefore, empirically, this study assists media practitioners in understanding how the Chinese government perceives media industries and, consequently, how media industries are operated in China. The study also reveals that despite the government‘s aspirations, China‘s media industries are still greatly constrained by institutional obstacles. Hence Beijing really needs to speed up its pace on the path of media reform, abandon the old mindset and create more room for creativity. Policy-makers in China should keep in mind that the only choice left to them is to further the reform.
Resumo:
New Australian curriculum documents and government initiatives advocate the inclusion of Asian perspectives, which is highly relevant to the STEM fields. For Australia and other countries, STEM education is an opportunity to develop competencies towards employment in high-demand areas, yet the world’s knowledge of STEM is changing rapidly, requiring continuous analysis to meet market demands. This paper presents the need for “collaborations between nations” through research to advance each country’s STEM agenda towards further globalisation of education with the sharing of knowledge. Research is needed on views of what constitutes cultural capital for STEM, which also involves understanding past and current STEM endeavours occurring within various countries. Most importantly for STEM education is uncovering instructional innovations aligned with countries’ cultures and STEM endeavours. Research questions are provided in this paper to stimulate ideas for investigating in these fields. Economically, and as demonstrated recently by Greece and Spain, countries throughout the world can no longer operate independently for advancing standards of living. The world needs to recognise interdependence not only in trade and resources but also through the knowledge base that exists within countries. Learning together globally means transitioning from independence to interdependence in STEM education that will help each country meet global demands.
Resumo:
This contribution describes two mass movement deposits (total volume ~0.5 km3) identified in seven marine cores located 8 to 15 km offshore southern Montserrat, West Indies. The deposits were emplaced in the last 35 ka and have not previously been recognised in either the subaerial or distal submarine records. Age constraints, provided by radiocarbon dating, show that an explosive volcanic eruption occurred at ca 8–12 ka, emplacing a primary eruption-related deposit that overlies a large (~0.3 km3) reworked bioclastic and volcaniclastic flow deposit, formed from a shelf collapse between 8 and 35 ka. The origin of these deposits has been deduced through the correlation of marine sediment cores, component analysis and geochemical analysis. The 8–12 ka primary volcanic deposit was likely derived from a highly-erosive pyroclastic flow from the Soufrière Hills volcano that entered the ocean and mixed with the water column forming a water-supported density current. Previous investigations of the eruption record suggested that there was a hiatus in activity at the Soufrière Hills volcano between 16 and 6 ka. The ca 8–12 ka eruptive episode identified here shows that this hiatus was shorter than previously hypothesised, and thus highlights the importance of obtaining an accurate and completemarine record of events offshore from volcanic islands and incorporating such data into eruption history reconstructions. Comparisons with the submarine deposit characteristics of the 2003 dome collapse also suggests that the ~8–12 ka eruptive episode was more explosive than eruptions from the current eruptive episode.