299 resultados para algorithm optimization
Resumo:
Distributed Genetic Algorithms (DGAs) designed for the Internet have to take its high communication cost into consideration. For island model GAs, the migration topology has a major impact on DGA performance. This paper describes and evaluates an adaptive migration topology optimizer that keeps the communication load low while maintaining high solution quality. Experiments on benchmark problems show that the optimized topology outperforms static or random topologies of the same degree of connectivity. The applicability of the method on real-world problems is demonstrated on a hard optimization problem in VLSI design.
Resumo:
In this paper, we will discuss the issue of rostering jobs of cabin crew attendants at KLM. Generated schedules get easily disrupted by events such as illness of an employee. Obviously, reserve people have to be kept 'on duty' to resolve such disruptions. A lot of reserve crew requires more employees, but too few results in so-called secondary disruptions, which are particularly inconvenient for both the crew members and the planners. In this research we will discuss several modifications of the reserve scheduling policy that have a potential to reduce the number of secondary disruptions, and therefore to improve the performance of the scheduling process.
Resumo:
The Cross-Entropy (CE) is an efficient method for the estimation of rare-event probabilities and combinatorial optimization. This work presents a novel approach of the CE for optimization of a Soft-Computing controller. A Fuzzy controller was designed to command an unmanned aerial system (UAS) for avoiding collision task. The only sensor used to accomplish this task was a forward camera. The CE is used to reach a near-optimal controller by modifying the scaling factors of the controller inputs. The optimization was realized using the ROS-Gazebo simulation system. In order to evaluate the optimization a big amount of tests were carried out with a real quadcopter.
Resumo:
The aim of this paper is to implement a Game-Theory based offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. The goal of this work is then to develop a Multi-Objective (MO) optimisation tool able to provide a set of optimal solutions for the inspection task, given the environment data, the mission requirements and the definition of the objectives to minimise. Results indicate the robustness and capability of the method to find the trade-off between the Pareto-optimal solutions.
Resumo:
The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.
Resumo:
In this paper we propose a framework for both gradient descent image and object alignment in the Fourier domain. Our method centers upon the classical Lucas & Kanade (LK) algorithm where we represent the source and template/model in the complex 2D Fourier domain rather than in the spatial 2D domain. We refer to our approach as the Fourier LK (FLK) algorithm. The FLK formulation is advantageous when one pre-processes the source image and template/model with a bank of filters (e.g. oriented edges, Gabor, etc.) as: (i) it can handle substantial illumination variations, (ii) the inefficient pre-processing filter bank step can be subsumed within the FLK algorithm as a sparse diagonal weighting matrix, (iii) unlike traditional LK the computational cost is invariant to the number of filters and as a result far more efficient, and (iv) this approach can be extended to the inverse compositional form of the LK algorithm where nearly all steps (including Fourier transform and filter bank pre-processing) can be pre-computed leading to an extremely efficient and robust approach to gradient descent image matching. Further, these computational savings translate to non-rigid object alignment tasks that are considered extensions of the LK algorithm such as those found in Active Appearance Models (AAMs).
Resumo:
An energy storage system (ESS) can provide ancillary services such as frequency regulation and reserves, as well as smooth the fluctuations of wind power outputs, and hence improve the security and economics of the power system concerned. The combined operation of a wind farm and an ESS has become a widely accepted operating mode. Hence, it appears necessary to consider this operating mode in transmission system expansion planning, and this is an issue to be systematically addressed in this work. Firstly, the relationship between the cost of the NaS based ESS and its discharging cycle life is analyzed. A strategy for the combined operation of a wind farm and an ESS is next presented, so as to have a good compromise between the operating cost of the ESS and the smoothing effect of the fluctuation of wind power outputs. Then, a transmission system expansion planning model is developed with the sum of the transmission investment costs, the investment and operating costs of ESSs and the punishment cost of lost wind energy as the objective function to be minimized. An improved particle swarm optimization algorithm is employed to solve the developed planning model. Finally, the essential features of the developed model and adopted algorithm are demonstrated by 18-bus and 46-bus test systems.
Resumo:
We consider the problem of how to maximize secure connectivity of multi-hop wireless ad hoc networks after deployment. Two approaches, based on graph augmentation problems with nonlinear edge costs, are formulated. The first one is based on establishing a secret key using only the links that are already secured by secret keys. This problem is in NP-hard and does not accept polynomial time approximation scheme PTAS since minimum cutsets to be augmented do not admit constant costs. The second one is based of increasing the power level between a pair of nodes that has a secret key to enable them physically connect. This problem can be formulated as the optimal key establishment problem with interference constraints with bi-objectives: (i) maximizing the concurrent key establishment flow, (ii) minimizing the cost. We show that both problems are NP-hard and MAX-SNP (i.e., it is NP-hard to approximate them within a factor of 1 + e for e > 0 ) with a reduction to MAX3SAT problem. Thus, we design and implement a fully distributed algorithm for authenticated key establishment in wireless sensor networks where each sensor knows only its one- hop neighborhood. Our witness based approaches find witnesses in multi-hop neighborhood to authenticate the key establishment between two sensor nodes which do not share a key and which are not connected through a secure path.
Resumo:
Secure communications in distributed Wireless Sensor Networks (WSN) operating under adversarial conditions necessitate efficient key management schemes. In the absence of a priori knowledge of post-deployment network configuration and due to limited resources at sensor nodes, key management schemes cannot be based on post-deployment computations. Instead, a list of keys, called a key-chain, is distributed to each sensor node before the deployment. For secure communication, either two nodes should have a key in common in their key-chains, or they should establish a key through a secure-path on which every link is secured with a key. We first provide a comparative survey of well known key management solutions for WSN. Probabilistic, deterministic and hybrid key management solutions are presented, and they are compared based on their security properties and re-source usage. We provide a taxonomy of solutions, and identify trade-offs in them to conclude that there is no one size-fits-all solution. Second, we design and analyze deterministic and hybrid techniques to distribute pair-wise keys to sensor nodes before the deployment. We present novel deterministic and hybrid approaches based on combinatorial design theory and graph theory for deciding how many and which keys to assign to each key-chain before the sensor network deployment. Performance and security of the proposed schemes are studied both analytically and computationally. Third, we address the key establishment problem in WSN which requires key agreement algorithms without authentication are executed over a secure-path. The length of the secure-path impacts the power consumption and the initialization delay for a WSN before it becomes operational. We formulate the key establishment problem as a constrained bi-objective optimization problem, break it into two sub-problems, and show that they are both NP-Hard and MAX-SNP-Hard. Having established inapproximability results, we focus on addressing the authentication problem that prevents key agreement algorithms to be used directly over a wireless link. We present a fully distributed algorithm where each pair of nodes can establish a key with authentication by using their neighbors as the witnesses.
Resumo:
Aims This research sought to determine optimal corn waste stream–based fermentation medium C and N sources and incubation time to maximize pigment production by an indigenous Indonesian Penicillium spp., as well as to assess pigment pH stability. Methods and Results A Penicillium spp. was isolated from Indonesian soil, identified as Penicillium resticulosum, and used to test the effects of carbon and nitrogen type and concentrations, medium pH, incubation period and furfural on biomass and pigment yield (PY) in a waste corncob hydrolysate basal medium. Maximum red PY (497·03 ± 55·13 mg l−1) was obtained with a 21 : 1 C : N ratio, pH 5·5–6·0; yeast extract-, NH4NO3-, NaNO3-, MgSO4·7H2O-, xylose- or carboxymethylcellulose (CMC)-supplemented medium and 12 days (25°C, 60–70% relative humidity, dark) incubation. C source, C, N and furfural concentration, medium pH and incubation period all influenced biomass and PY. Pigment was pH 2–9 stable. Conclusions Penicillium resticulosum demonstrated microbial pH-stable-pigment production potential using a xylose or CMC and N source, supplemented waste stream cellulose culture medium. Significance and Impact of the Study Corn derived, waste stream cellulose can be used as a culture medium for fungal pigment production. Such application provides a process for agricultural waste stream resource reuse for production of compounds in increasing demand.
Resumo:
An algorithm for computing dense correspondences between images of a stereo pair or image sequence is presented. The algorithm can make use of both standard matching metrics and the rank and census filters, two filters based on order statistics which have been applied to the image matching problem. Their advantages include robustness to radiometric distortion and amenability to hardware implementation. Results obtained using both real stereo pairs and a synthetic stereo pair with ground truth were compared. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
This paper presents an adaptive metering algorithm for enhancing the electronic screening (e-screening) operation at truck weight stations. This algorithm uses a feedback control mechanism to control the level of truck vehicles entering the weight station. The basic operation of the algorithm allows more trucks to be inspected when the weight station is underutilized by adjusting the weight threshold lower. Alternatively, the algorithm restricts the number of trucks to inspect when the station is overutilized to prevent queue spillover. The proposed control concept is demonstrated and evaluated in a simulation environment. The simulation results demonstrate the considerable benefits of the proposed algorithm in improving overweight enforcement with minimal negative impacts on nonoverweighed trucks. The test results also reveal that the effectiveness of the algorithm improves with higher truck participation rates in the e-screening program.
Resumo:
Long traffic queues on off-ramps significantly compromise the safety and throughput of motorways. Obtaining accurate queue information is crucial for countermeasure strategies. However, it is challenging to estimate traffic queues with locally installed inductive loop detectors. This paper deals with the problem of queue estimation with the interpretation of queuing dynamics and the corresponding time-occupancy distribution over motorway off-ramps. A novel algorithm for real-time queue estimation with two detectors is presented and discussed. Results derived from microscopic traffic simulation validated the effectiveness of the algorithm and revealed some of its useful features: (a) long and intermediate traffic queues could be accurately measured, (b) relatively simple detector input (i.e., time occupancy) was required, and (c) the estimation philosophy was independent with signal timing changes and provided the potential to cooperate with advanced strategies for signal control. Some issues concerning field implementation are also discussed.
Resumo:
The primary objective of this study is to develop a robust queue estimation algorithm for motorway on-ramps. Real-time queue information is the most vital input for a dynamic queue management that can treat long queues on metered on-ramps more sophistically. The proposed algorithm is developed based on the Kalman filter framework. The fundamental conservation model is used to estimate the system state (queue size) with the flow-in and flow-out measurements. This projection results are updated with the measurement equation using the time occupancies from mid-link and link-entrance loop detectors. This study also proposes a novel single point correction method. This method resets the estimated system state to eliminate the counting errors that accumulate over time. In the performance evaluation, the proposed algorithm demonstrated accurate and reliable performances and consistently outperformed the benchmarked Single Occupancy Kalman filter (SOKF) method. The improvements over SOKF are 62% and 63% in average in terms of the estimation accuracy (MAE) and reliability (RMSE), respectively. The benefit of the innovative concepts of the algorithm is well justified by the improved estimation performance in the congested ramp traffic conditions where long queues may significantly compromise the benchmark algorithm’s performance.