236 resultados para abiotic stress
Resumo:
Objective National guidelines for management of intermediate risk patients with suspected acute coronary syndrome, in whom AMI has been excluded, advocate provocative testing to final risk stratify these patients into low risk (negative testing) or high risk (positive testing suggestive of unstable angina). Adults less than 40 years have a low pretest probability of acute coronary syndrome. The utility of exercise stress testing in young adults with chest pain suspected of acute coronary syndrome who have National Heart Foundation intermediate risk features was evaluated Methods A retrospective analysis of exercise stress testing performed on patients less than 40 years was evaluated. Patients were enrolled on a chest pain pathway and had negative serial ECGs and cardiac biomarkers before exercise stress testing to rule-out acute coronary syndrome. Chart review was completed on patients with positive stress tests. Results The 3987 patients with suspected intermediate risk acute coronary syndrome underwent exercise stress testing. One thousand and twenty-seven (25.8%) were aged less than 40 years (age 33.3 ± 4.8 years). Four of these 1027 patients had a positive exercise stress test (0.4% incidence of positive exercise stress testing). Of those, three patients had subsequent non-invasive functional testing that yielded a negative result. One patient declined further investigations. Assuming this was a true positive exercise stress test, the incidence of true positive exercise stress testing would have been 0.097% (95% confidence interval: 0.079–0.115%) (one of 1027 patients). Conclusions Routine exercise stress testing has limited value in the risk stratification of adults less than 40 years with suspected intermediate risk of acute coronary syndrome
Resumo:
Objective: To examine whether positive mental health (PMH)—a positively focused well-being construct—moderates the job stress–distress relationship. Methods: Longitudinal regression was used to test two waves of matched, population-level data from a sample of older, working Australian adults (n = 3291) to see whether PMH modified the relationship between work stress and later psychological distress. Results: Time 1 work stress was positively associated with distress at both time points. Positive mental health was negatively associated with work stress at both time points. Positive mental health modified the impact of work stress on psychological distress. This effect only occurred for those with the highest levels of PMH. Conclusions: Positive mental health may help protect workers from the effect of workplace stress but only in a small proportion of the population. Therefore, to improve workplace mental health, workplaces need to both prevent stress and promote PMH.
Resumo:
Atmospheric pressure gas plasma (AGP) generates reactive oxygen species (ROS) that induce apoptosis in cultured cancer cells. The majority of cancer cells develop a ROS-scavenging anti-oxidant system regulated by Nrf2, which confers resistance to ROS-mediated cancer cell death. Generation of ROS is involved in the AGP-induced cancer cell death of several colorectal cancer cells (Caco2, HCT116 and SW480) by activation of ASK1-mediated apoptosis signaling pathway without affecting control cells (human colonic sub-epithelial myofibroblasts; CO18, human fetal lung fibroblast; MRC5 and fetal human colon; FHC). However, the identity of an oxidase participating in AGP-induced cancer cell death is unknown. Here, we report that AGP up-regulates the expression of Nox2 (NADPH oxidase) to produce ROS. RNA interference designed to target Nox2 effectively inhibits the AGP-induced ROS production and cancer cell death. In some cases both colorectal cancer HT29 and control cells showed resistance to AGP treatment. Compared to AGP-sensitive Caco2 cells, HT29 cells show a higher basal level of the anti-oxidant system transcriptional regulator Nrf2 and its target protein sulfiredoxin (Srx) which are involved in cellular redox homeostasis. Silencing of both Nrf2 and Srx sensitized HT29 cells, leads to ROS overproduction and decreased cell viability. This indicates that in HT29 cells, Nrf2/Srx axis is a protective factor against AGP-induced oxidative stress. The inhibition of Nrf2/Srx signaling should be considered as a central target in drug-resistant colorectal cancer treatments.
Resumo:
Background: Haemodialysis nurses form long term relationships with patients in a technologically complex work environment. Previous studies have highlighted that haemodialysis nurses face stressors related to the nature of their work and also their work environments leading to reported high levels of burnout. Using Kanters (1997) Structural Empowerment Theory as a guiding framework, the aim of this study was to explore the factors contributing to satisfaction with the work environment, job satisfaction, job stress and burnout in haemodialysis nurses. Methods: Using a sequential mixed-methods design, the first phase involved an on-line survey comprising demographic and work characteristics, Brisbane Practice Environment Measure (B-PEM), Index of Work Satisfaction(IWS), Nursing Stress Scale (NSS) and the Maslach Burnout Inventory (MBI). The second phase involved conducting eight semi-structured interviews with data thematically analyzed. Results: From the 417 nurses surveyed the majority were female (90.9 %), aged over 41 years of age (74.3 %), and 47.4 % had worked in haemodialysis for more than 10 years. Overall the work environment was perceived positively and there was a moderate level of job satisfaction. However levels of stress and emotional exhaustion (burnout) were high. Two themes, ability to care and feeling successful as a nurse, provided clarity to the level of job satisfaction found in phase 1. While two further themes, patients as quasi-family and intense working teams, explained why working as a haemodialysis nurse was both satisfying and stressful. Conclusions: Nurse managers can use these results to identify issues being experienced by haemodialysis nurses working in the unit they are supervising.
Resumo:
Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc) following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs) play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.
Resumo:
Surface effect on the four independent elastic constants of nanohoneycombs is investigated in this paper. The axial deformation of the horizontal cell wall is included, comparing to the Gibson's method, and the contributions of the two components of surface stress (i.e. surface residual stress and surface elasticity) are discussed. The result shows that the regular hexagonal honeycomb is not isotropic but orthotropic. An increase in the cell-wall thickness t leads to an increase in the discrepancy of the Young's moduli in both directions. Furthermore, the surface residual stress dominates the surface effect on the elastic constants when t < 15 nm (or the relative density <0.17), which is in contrast to that the surface elasticity does when t > 15 nm (or the relative density > 0.17) for metal Al. The present structure and theory may be useful in the design of future nanodevices.
Resumo:
Background: Biomechanical stress analysis has been used for plaque vulnerability assessment. The presence of plaque hemorrhage (PH) is a feature of plaque vulnerability and is associated with thromboembolic ischemic events. The purpose of the present study was to use finite element analysis (FEA) to compare the stress profiles of hemorrhagic and non-hemorrhagic profiles. Methods and Results: Forty-five consecutive patients who had suffered a cerebrovascular ischemic event with an underlying carotid artery disease underwent high-resolution magnetic resonance imaging (MRI) of their symptomatic carotid artery in a 1.5-T MRI system. Axial images were manually segmented for various plaque components and used for FEA. Maximum critical stress (M-CstressSL) for each slice was determined. Within a plaque, the maximum M-CstressSL for each slice of a plaque was selected to represent the maximum critical stress of that plaque (M-CstressPL) and used to compare hemorrhagic and non-hemorrhagic plaques. A total of 62% of plaques had hemorrhage. It was observed that plaques with hemorrhage had significantly higher stress (M-CstressPL) than plaques without PH (median [interquartile range]: 315 kPa [247-434] vs. 200 kPa [171-282], P=0.003). Conclusions: Hemorrhagic plaques have higher biomechanical stresses than non-hemorrhagic plaques. MRI-based FEA seems to have the potential to assess plaque vulnerability.
Resumo:
Stroke is one of the leading causes of death in the world, resulting mostly from the sudden ruptures of atherosclerosis carotid plaques. Until now, the exact plaque rupture mechanism has not been fully understood, and also the plaque rupture risk stratification. The advanced multi-spectral magnetic resonance imaging (MRI) has allowed the plaque components to be visualized in-vivo and reconstructed by computational modeling. In the study, plaque stress analysis using fully coupled fluid structure interaction was applied to 20 patients (12 symptomatic and 8 asymptomatic) reconstructed from in-vivo MRI, followed by a detailed biomechanics analysis, and morphological feature study. The locally extreme stress conditions can be found in the fibrous cap region, 85% at the plaque shoulder based on the present study cases. Local maximum stress values predicted in the plaque region were found to be significantly higher in symptomatic patients than that in asymptomatic patients (200±43. kPa vs. 127±37. kPa, p=0.001). Plaque stress level, defined by excluding 5% highest stress nodes in the fibrous cap region based on the accumulative histogram of stress experienced on the computational nodes in the fibrous cap, was also significantly higher in symptomatic patients than that in asymptomatic patients (154±32. kPa vs. 111±23. kPa, p<0.05). Although there was no significant difference in lipid core size between the two patient groups, symptomatic group normally had a larger lipid core and a significantly thinner fibrous cap based on the reconstructed plaques using 3D interpolation from stacks of 2D contours. Plaques with a higher stenosis were more likely to have extreme stress conditions upstream of plaque throat. The combined analyses of plaque MR image and plaque stress will advance our understanding of plaque rupture, and provide a useful tool on assessing plaque rupture risk.
Resumo:
Plaque rupture has been considered to be the result of its structural failure. The aim of this study is to suggest a possible link between higher stresses and rupture sites observed from in vivo magnetic resonance imaging (MRI) of transient ischemic attack (TIA) patients, by using stress analysis methods. Three patients, who had recently suffered a TIA, underwent in vivo multi-spectral MR imaging. Based on plaque geometries reconstructed from the post-rupture status, six pre-rupture plaque models were generated for each patient dataset with different reconstructions of rupture sites to bridge the gap of fibrous cap from original MRI images. Stress analysis by fluid structure interaction simulation was performed on the models, followed by analysis of local stress concentration distribution and plaque rupture sites. Furthermore, the sensitivity of stress analysis to the pre-rupture plaque geometry reconstruction was examined. Local stress concentrations were found to be located at the plaque rupture sites for the three subjects studied. In the total of 18 models created, the locations of the stress concentration regions were similar in 17 models in which rupture sites were always associated with high stresses. The local stress concentration region moved from circumferential center to the shoulder region (slightly away from the rupture site) for a case with a thick fibrous cap. Plaque wall stress level in the rupture locations was found to be much higher than the value in non-rupture locations. The good correlation between local stress concentrations and plaque rupture sites, and generally higher plaque wall stress level in rupture locations in the subjects studied could provide indirect evidence for the extreme stress-induced plaque rupture hypothesis. Local stress concentration in the plaque region could be one of the factors contributing to plaque rupture.
Resumo:
Background: Biomechanical stresses play an important role in determining plaque stability. Quantification of these simulated stresses can be potentially used to assess plaque vulnerability and differentiate different patient groups. Methods and Results: 54 asymptomatic and 45 acutely symptomatic patients underwent in vivo multicontrast magnetic resonance imaging (MRI) of the carotid arteries. Plaque geometry used for finite element analysis was derived from in vivo MRI at the sites of maximum and minimum plaque burden. In total, 198 slices were used for the computational simulations. A pre-shrink technique was used to refine the simulation. Maximum principle stress at the vulnerable plaque sites (ie, critical stress) was extracted for the selected slices and a comparison was performed between the 2 groups. Critical stress in the slice with maximum plaque burden is significantly higher in acutely symptomatic patients as compared to asymptomatic patients (median, inter quartile range: 198.0 kPa (119.8-359.0 kPa) vs 138.4 kPa (83.8-242.6 kPa), P=0.04). No significant difference was found in the slice with minimum plaque burden between the 2 groups (196.7 kPa (133.3-282.7 kPa) vs 182.4 kPa (117.2-310.6 kPa), P=0.82). Conclusions: Acutely symptomatic carotid plaques have significantly high biomechanical stresses than asymptomatic plaques. This might be potentially useful for establishing a biomechanical risk stratification criteria based on plaque burden in future studies.
Resumo:
High mechanical stress in atherosclerotic plaques at vulnerable sites, called critical stress, contributes to plaque rupture. The site of minimum fibrous cap (FC) thickness (FCMIN) and plaque shoulder are well-documented vulnerable sites. The inherent weakness of the FC material at the thinnest point increases the stress, making it vulnerable, and it is the big curvature of the lumen contour over FC which may result in increased plaque stress. We aimed to assess critical stresses at FCMIN and the maximum lumen curvature over FC (LCMAX) and quantify the difference to see which vulnerable site had the highest critical stress and was, therefore, at highest risk of rupture. One hundred patients underwent high resolution carotid magnetic resonance (MR) imaging. We used 352 MR slices with delineated atherosclerotic components for the simulation study. Stresses at all the integral nodes along the lumen surface were calculated using the finite-element method. FCMIN and LCMAX were identified, and critical stresses at these sites were assessed and compared. Critical stress at FC MIN was significantly lower than that at LCMAX (median: 121.55 kPa; inter quartile range (IQR) = [60.70-180.32] kPa vs. 150.80 kPa; IQR = [91.39-235.75] kPa, p < 0.0001). If critical stress at FCMIN was only used, then the stress condition of 238 of 352 MR slices would be underestimated, while if the critical stress at LCMAX only was used, then 112 out of 352 would be underestimated. Stress analysis at FCMIN and LCMAX should be used for a refined mechanical risk assessment of atherosclerotic plaques, since material failure at either site may result in rupture.
Resumo:
Stress analysis within carotid plaques based on in vivo MR imaging has shown to be useful for the identification of vulnerable atheroma. This study is to investigate whether magnetic resonance imaging (MRI) based-biomechanical stress analysis of carotid plaques can differentiate acute symptomatic and asymptomatic patients. 54 asymptomatic and 45 acute symptomatic patients underwent in vivo multi-contrast MRI of the carotid arteries. Plaque geometry used for finite element analysis was derived from in vivo MR images at the site of maximum and minimum plaque burden. In total 198 slices were used for the computational simulations. A pre shrink technique was used to refine the simulation. Maximum principle stress at the vulnerable plaque sites (i.e. critical stress) was extracted for the selected slices and a comparison was performed between the two groups. Critical stress at the site of maximum plaque burden is significantly higher in acute symptomatic patients as compared to asymptomatic patients [median: 198.0kPa (inter quartile range (IQR) = (119.8 - 359.0) vs. 138.4kPa (83.8, 242.6), p=0.04]. No significant difference was found at the minimum plaque burden site between the two groups [196.7kPa (133.3- 282.7) vs. 182.4kPa (117.2 - 310. 6), p=0.82). Stress analysis at the site of maximal plaque burden can be effectively used for differentiating acute symptomatic carotid plaques from asymptomatic plaques. This maybe potentially used for development of biomechanical risk stratification criteria based on plaque burden in future studies.
Resumo:
Background Aneurysm expansion rate is an important indicator of the potential risk of abdominal aortic aneurysm (AAA) rupture. Stress within the AAA wall is also thought to be a trigger for its rupture. However, the association between aneurysm wall stresses and expansion of AAA is unclear. Methods and Results Forty-four patients with AAAs were included in this longitudinal follow-up study. They were assessed by serial abdominal ultrasonography and computed tomography scans if a critical size was reached or a rapid expansion occurred. Patient-specific 3-dimensional AAA geometries were reconstructed from the follow-up computed tomography images. Structural analysis was performed to calculate the wall stresses of the AAA models at both baseline and final visit. A nonlinear large-strain finite element method was used to compute the wall-stress distribution. The relationship between wall stresses and expansion rate was investigated. Slowly and rapidly expanding aneurysms had comparable baseline maximum diameters (median, 4.35 cm [interquartile range, 4.12 to 5.0 cm] versus 4.6 cm [interquartile range, 4.2 to 5.0 cm]; P=0.32). Rapidly expanding AAAs had significantly higher shoulder stresses than slowly expanding AAAs (median, 300 kPa [interquartile range, 280 to 320 kPa] versus 225 kPa [interquartile range, 211 to 249 kPa]; P=0.0001). A good correlation between shoulder stress at baseline and expansion rate was found (r=0.71; P=0.0001). Conclusion A higher shoulder stress was found to have an association with a rapidly expanding AAA. Therefore, it may be useful for estimating the expansion of AAAs and improve risk stratification of patients with AAAs.
Resumo:
Growth rate of abdominal aortic aneurysm (AAA) is thought to be an important indicator of the potential risk of rupture. Wall stress is also thought to be a trigger for its rupture. However, stress change during the expansion of an AAA is unclear. Forty-four patients with AAAs were included in this longitudinal follow-up study. They were assessed by serial abdominal ultrasonography and computerized tomography (CT) scans if a critical size was reached or a rapid expansion occurred. Patient-specific 3-dimensional AAA geometries were reconstructed from the follow-up CT images. Structural analysis was performed to calculate the wall stresses of the AAA models at both baseline and final visit. A non-linear large-strain finite element method was used to compute the wall stress distribution. The average growth rate was 0.66cm/year (range 0-1.32 cm/year). A significantly positive correlation between shoulder tress at baseline and growth rate was found (r=0.342; p=0.02). A higher shoulder stress is associated with a rapidly expanding AAA. Therefore, it may be useful for estimating the growth expansion of AAAs and further risk stratification of patients with AAAs.