208 resultados para Willoughby de Eresby, Peregrine Bertie, 11th baron, 1555-1601.
Resumo:
Nepal, as a consequence of its geographical location and changing climate, faces frequent threats of natural disasters. According to the World Bank’s 2005 Natural Disasters Hotspots Report, Nepal is ranked the 11th most vulnerable country to earthquake and 30th to flood risk. Geo-Hazards International (2011) has classified Kathmandu as one of the world’s most vulnerable cities to earthquakes. In the last four decades more than 32,000 people in Nepal have lost their lives and annual monetary loss is estimated at more than 15 million (US) dollars. This review identifies gaps in knowledge, and progress towards implementation of the Post Hyogo Framework of Action. Nepal has identified priority areas: community resilience, sustainable development and climate change induced disaster risk reduction. However, one gap between policy and action lies in the ability of Nepal to act effectively in accordance with an appropriate framework for media activities. Supporting media agencies include the Press Council, Federation of Nepalese Journalists, Nepal Television, Radio Nepal and Telecommunications Authority and community based organizations. The challenge lies in further strengthening traditional and new media to undertake systematic work supported by government bodies and the National Risk Reduction Consortium (NRRC). Within this context, the ideal role for media is one that is proactive where journalists pay attention to a range of appropriate angles or frames when preparing and disseminating information. It is important to develop policy for effective information collection, sharing and dissemination in collaboration with Telecommunication, Media and Journalists. The aim of this paper is to describe the developments in disaster management in Nepal and their implications for media management. This study provides lessons for government, community and the media to help improve the framing of disaster messages. Significantly, the research highlights the prominence that should be given to flood, landslides, lightning and earthquakes.
Resumo:
Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).
Resumo:
Introduction: PET-FDG and USPIO-enhanced MRI are increasingly being used in depicting carotid atheroma inflammation - a risk factor for the high risk plaque. Their combined use has not been previously reported. Report: Two patients presenting with stroke and identified with 50% carotid stenosis on duplex ultrasonography, underwent PET FDG and USPIO-enhanced MR imaging. Results were concordant and complementary suggesting that both techniques reflect similar metabolic processes. Discussion: The selection of patients for carotid revascularisation has largely been based on the severity of luminal stenosis alone. The two imaging modalities, which identify inflammatory activity, may be potential surrogate risk markers in the selection of patients eligible for carotid surgery, if plaque inflammation can be correlated with risk of developing clinical symptoms.
Resumo:
Fatigue of the steel in rails continues to be of major concern to heavy haul track owners despite careful selection and maintenance of rails. The persistence of fatigue is due in part to the erroneous assumption that the maximum loads on, and stresses in, the rails are predictable. Recent analysis of extensive wheel impact detector data from a number of heavy haul tracks has shown that the most damaging forces are in fact randomly distributed with time and location and can be much greater than generally expected. Large- scale Monte-Carlo simulations have been used to identify rail stresses caused by actual, measured distributions of wheel-rail forces on heavy haul tracks. The simulations show that fatigue failure of the rail foot can occur in situations which would be overlooked by traditional analyses. The most serious of these situations are those where track is accessed by multiple operators and in situations where there is a mix of heavy haul, general freight and/or passenger traffic. The least serious are those where the track is carrying single-operator-owned heavy haul unit trains. The paper shows how using the nominal maximum axle load of passing traffic, which is the key issue in traditional analyses, is insufficient and must be augmented with consideration of important operational factors. Ignoring such factors can be costly.
Resumo:
Heavy haul railway lines are important and expensive items of infrastructure operating in an environment which is increasingly focussed on risk-based management and constrained profit margins. It is vital that costs are minimised but also that infrastructure satisfies failure criteria and standards of reliability which account for the random nature of wheel-rail forces and of the properties of the materials in the track. In Australia and the USA, concrete railway sleepers/ties are still designed using methods which the rest of the civil engineering world discarded decades ago in favour of the more rational, more economical and probabilistically based, limit states design (LSD) concept. This paper describes a LSD method for concrete sleepers which is based on (a) billions of measurements over many years of the real, random wheel-rail forces on heavy haul lines, and (b) the true capacity of sleepers. The essential principles on which the new method is based are similar to current, widely used LSD-based standards for concrete structures. The paper proposes and describes four limit states which a sleeper must satisfy, namely: strength; operations; serviceability; and fatigue. The method has been applied commercially to two new major heavy haul lines in Australia, where it has saved clients millions of dollars in capital expenditure.
Resumo:
This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.
Resumo:
Three major changes in drink driving enforcement have occurred in South Australia since 1981. The effect of these changes on a number of surrogate measures of alcohol involvement in accidents were investigated. The surrogates included alcohol involvement of driver fatalities, and combinations of casualty, serious casualty, single vehicle and nighttime accidents. Data from previous studies were also cited. It was found that relationships between surrogate measures were inconsistent, and incompatible with assumptions about drink driving levels and related accidents. It was concluded that until these effects are understood the use of surrogate measures should be treated with caution.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated approximately 2,000, approximately 3,700 and approximately 9,500 SNPs explained approximately 21%, approximately 24% and approximately 29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
The spectral energy associated with the carrier and sidebands of naturally sampled carrier based PWM can be spread by randomising the carrier (switch) half-period Tc = 1/2fc. So long as the switch duty cycle each period still correctly reflects the value of the modulating fundamental waveform as sampled during that switch period, then the fundamental component will remain undistorted. Natural sampling will ensure this occurs. Carrier based PWM can be extended to (m+1) level multilevel converter waveform generation by creating m triangular carriers, each with an equal 2*pi/m phase displacement. Alternatively the carrier disposition strategy calls for m amplitude displaced triangular carriers, each of amplitude 1/m and frequency mfc. Randomising these carrier sub-periods T0> = 1/2mfc is shown to generate (m+ 1) level PWM waveforms where the first (m-1) carrier groups are cancelled, while the remaining carrier and sidebands at multiples of mfc are spectrally spread. Numerous five level simulation and experimentally gathered randomised PWM waveforms are presented, showing the effects of the variation of the degree of randomisation, modulation depth and pulse number.
Resumo:
An alternative approach to digital PWM generation uses an accumulator rather than a counter to generate the carrier. This offers several advantages. The resolution and gain of the pulse width modulator remain constant regardless of the module clock frequency and PWM output frequency. The PWM resolution also becomes fixed at the register width. Even at high PWM frequencies, the resolution remains high when averaged over a number of PWM cycles. An inherent dithering of the PWM waveform introduced over successive cycles blurs the switching spectra without distorting the modulating waveform. The technique also lends itself to easily generating several phase shifted PWM waveforms suitable for multilevel converter modulation. Several example waveforms generated using both simulation and FPGA hardware are presented.
Resumo:
- Background Following Kapur’s hypothesis [1] that schizophrenia is the intensification of phenomenological experience caused by the upregulation of dopamine, a survey of observed dopamine responses to phenomenal information was conducted. - Method An integrative study. - Results When considered in the light of the ecological theory of perception (ETP) [2] and global workspace theory (GBT) [3] Kapur’s hypothesis makes sense: Both the ETP and the GBT require an agent to attribute salience to perceptual information in order to filter an infinite array of available information and usefully sort information by importance. Dopamine may be the primary agent for this purpose. Thus perception itself is suspected as being a dopamine-mediated, and the symptoms and signs of schizophrenia may therefore be the result of dopamine dysfunction. - Conclusions The application of both ETP and GBT to the dopamine hypothesis gives the hypothesis a much-needed causal mechanism and the confl uence of these theories also provides ETP with a neurological perceptual fi lter. This paper provides a compelling model for schizophrenia; a hypothesis that ties perceptual theory to Kapur ’ s concept of dopamine-mediated salience.
Resumo:
This paper describes the 3D Water Chemistry Atlas - an open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model. Following a review of existing technologies, the system adopts Cesium (an open source Web-based 3D mapping and visualization interface) together with a PostGreSQL/PostGIS database, for the technical architecture. In addition a range of the search, filtering, browse and analysis tools were developed that enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about activities such as coal seam gas extraction, waste water extraction and re-use.