823 resultados para Urban network


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motor vehicles are a major source of gaseous and particulate matter pollution in urban areas, particularly of ultrafine sized particles (diameters < 0.1 µm). Exposure to particulate matter has been found to be associated with serious health effects, including respiratory and cardiovascular disease, and mortality. Particle emissions generated by motor vehicles span a very broad size range (from around 0.003-10 µm) and are measured as different subsets of particle mass concentrations or particle number count. However, there exist scientific challenges in analysing and interpreting the large data sets on motor vehicle emission factors, and no understanding is available of the application of different particle metrics as a basis for air quality regulation. To date a comprehensive inventory covering the broad size range of particles emitted by motor vehicles, and which includes particle number, does not exist anywhere in the world. This thesis covers research related to four important and interrelated aspects pertaining to particulate matter generated by motor vehicle fleets. These include the derivation of suitable particle emission factors for use in transport modelling and health impact assessments; quantification of motor vehicle particle emission inventories; investigation of the particle characteristic modality within particle size distributions as a potential for developing air quality regulation; and review and synthesis of current knowledge on ultrafine particles as it relates to motor vehicles; and the application of these aspects to the quantification, control and management of motor vehicle particle emissions. In order to quantify emissions in terms of a comprehensive inventory, which covers the full size range of particles emitted by motor vehicle fleets, it was necessary to derive a suitable set of particle emission factors for different vehicle and road type combinations for particle number, particle volume, PM1, PM2.5 and PM1 (mass concentration of particles with aerodynamic diameters < 1 µm, < 2.5 µm and < 10 µm respectively). The very large data set of emission factors analysed in this study were sourced from measurement studies conducted in developed countries, and hence the derived set of emission factors are suitable for preparing inventories in other urban regions of the developed world. These emission factors are particularly useful for regions with a lack of measurement data to derive emission factors, or where experimental data are available but are of insufficient scope. The comprehensive particle emissions inventory presented in this thesis is the first published inventory of tailpipe particle emissions prepared for a motor vehicle fleet, and included the quantification of particle emissions covering the full size range of particles emitted by vehicles, based on measurement data. The inventory quantified particle emissions measured in terms of particle number and different particle mass size fractions. It was developed for the urban South-East Queensland fleet in Australia, and included testing the particle emission implications of future scenarios for different passenger and freight travel demand. The thesis also presents evidence of the usefulness of examining modality within particle size distributions as a basis for developing air quality regulations; and finds evidence to support the relevance of introducing a new PM1 mass ambient air quality standard for the majority of environments worldwide. The study found that a combination of PM1 and PM10 standards are likely to be a more discerning and suitable set of ambient air quality standards for controlling particles emitted from combustion and mechanically-generated sources, such as motor vehicles, than the current mass standards of PM2.5 and PM10. The study also reviewed and synthesized existing knowledge on ultrafine particles, with a specific focus on those originating from motor vehicles. It found that motor vehicles are significant contributors to both air pollution and ultrafine particles in urban areas, and that a standardized measurement procedure is not currently available for ultrafine particles. The review found discrepancies exist between outcomes of instrumentation used to measure ultrafine particles; that few data is available on ultrafine particle chemistry and composition, long term monitoring; characterization of their spatial and temporal distribution in urban areas; and that no inventories for particle number are available for motor vehicle fleets. This knowledge is critical for epidemiological studies and exposure-response assessment. Conclusions from this review included the recommendation that ultrafine particles in populated urban areas be considered a likely target for future air quality regulation based on particle number, due to their potential impacts on the environment. The research in this PhD thesis successfully integrated the elements needed to quantify and manage motor vehicle fleet emissions, and its novelty relates to the combining of expertise from two distinctly separate disciplines - from aerosol science and transport modelling. The new knowledge and concepts developed in this PhD research provide never before available data and methods which can be used to develop comprehensive, size-resolved inventories of motor vehicle particle emissions, and air quality regulations to control particle emissions to protect the health and well-being of current and future generations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inquiry documented in this thesis is located at the nexus of technological innovation and traditional schooling. As we enter the second decade of a new century, few would argue against the increasingly urgent need to integrate digital literacies with traditional academic knowledge. Yet, despite substantial investments from governments and businesses, the adoption and diffusion of contemporary digital tools in formal schooling remain sluggish. To date, research on technology adoption in schools tends to take a deficit perspective of schools and teachers, with the lack of resources and teacher ‘technophobia’ most commonly cited as barriers to digital uptake. Corresponding interventions that focus on increasing funding and upskilling teachers, however, have made little difference to adoption trends in the last decade. Empirical evidence that explicates the cultural and pedagogical complexities of innovation diffusion within long-established conventions of mainstream schooling, particularly from the standpoint of students, is wanting. To address this knowledge gap, this thesis inquires into how students evaluate and account for the constraints and affordances of contemporary digital tools when they engage with them as part of their conventional schooling. It documents the attempted integration of a student-led Web 2.0 learning initiative, known as the Student Media Centre (SMC), into the schooling practices of a long-established, high-performing independent senior boys’ school in urban Australia. The study employed an ‘explanatory’ two-phase research design (Creswell, 2003) that combined complementary quantitative and qualitative methods to achieve both breadth of measurement and richness of characterisation. In the initial quantitative phase, a self-reported questionnaire was administered to the senior school student population to determine adoption trends and predictors of SMC usage (N=481). Measurement constructs included individual learning dispositions (learning and performance goals, cognitive playfulness and personal innovativeness), as well as social and technological variables (peer support, perceived usefulness and ease of use). Incremental predictive models of SMC usage were conducted using Classification and Regression Tree (CART) modelling: (i) individual-level predictors, (ii) individual and social predictors, and (iii) individual, social and technological predictors. Peer support emerged as the best predictor of SMC usage. Other salient predictors include perceived ease of use and usefulness, cognitive playfulness and learning goals. On the whole, an overwhelming proportion of students reported low usage levels, low perceived usefulness and a lack of peer support for engaging with the digital learning initiative. The small minority of frequent users reported having high levels of peer support and robust learning goal orientations, rather than being predominantly driven by performance goals. These findings indicate that tensions around social validation, digital learning and academic performance pressures influence students’ engagement with the Web 2.0 learning initiative. The qualitative phase that followed provided insights into these tensions by shifting the analytics from individual attitudes and behaviours to shared social and cultural reasoning practices that explain students’ engagement with the innovation. Six indepth focus groups, comprising 60 students with different levels of SMC usage, were conducted, audio-recorded and transcribed. Textual data were analysed using Membership Categorisation Analysis. Students’ accounts converged around a key proposition. The Web 2.0 learning initiative was useful-in-principle but useless-in-practice. While students endorsed the usefulness of the SMC for enhancing multimodal engagement, extending peer-topeer networks and acquiring real-world skills, they also called attention to a number of constraints that obfuscated the realisation of these design affordances in practice. These constraints were cast in terms of three binary formulations of social and cultural imperatives at play within the school: (i) ‘cool/uncool’, (ii) ‘dominant staff/compliant student’, and (iii) ‘digital learning/academic performance’. The first formulation foregrounds the social stigma of the SMC among peers and its resultant lack of positive network benefits. The second relates to students’ perception of the school culture as authoritarian and punitive with adverse effects on the very student agency required to drive the innovation. The third points to academic performance pressures in a crowded curriculum with tight timelines. Taken together, findings from both phases of the study provide the following key insights. First, students endorsed the learning affordances of contemporary digital tools such as the SMC for enhancing their current schooling practices. For the majority of students, however, these learning affordances were overshadowed by the performative demands of schooling, both social and academic. The student participants saw engagement with the SMC in-school as distinct from, even oppositional to, the conventional social and academic performance indicators of schooling, namely (i) being ‘cool’ (or at least ‘not uncool’), (ii) sufficiently ‘compliant’, and (iii) achieving good academic grades. Their reasoned response therefore, was simply to resist engagement with the digital learning innovation. Second, a small minority of students seemed dispositionally inclined to negotiate the learning affordances and performance constraints of digital learning and traditional schooling more effectively than others. These students were able to engage more frequently and meaningfully with the SMC in school. Their ability to adapt and traverse seemingly incommensurate social and institutional identities and norms is theorised as cultural agility – a dispositional construct that comprises personal innovativeness, cognitive playfulness and learning goals orientation. The logic then is ‘both and’ rather than ‘either or’ for these individuals with a capacity to accommodate both learning and performance in school, whether in terms of digital engagement and academic excellence, or successful brokerage across multiple social identities and institutional affiliations within the school. In sum, this study takes us beyond the familiar terrain of deficit discourses that tend to blame institutional conservatism, lack of resourcing and teacher resistance for low uptake of digital technologies in schools. It does so by providing an empirical base for the development of a ‘third way’ of theorising technological and pedagogical innovation in schools, one which is more informed by students as critical stakeholders and thus more relevant to the lived culture within the school, and its complex relationship to students’ lives outside of school. It is in this relationship that we find an explanation for how these individuals can, at the one time, be digital kids and analogue students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis details methodology to estimate urban stormwater quality based on a set of easy to measure physico-chemical parameters. These parameters can be used as surrogate parameters to estimate other key water quality parameters. The key pollutants considered in this study are nitrogen compounds, phosphorus compounds and solids. The use of surrogate parameter relationships to evaluate urban stormwater quality will reduce the cost of monitoring and so that scientists will have added capability to generate a large amount of data for more rigorous analysis of key urban stormwater quality processes, namely, pollutant build-up and wash-off. This in turn will assist in the development of more stringent stormwater quality mitigation strategies. The research methodology was based on a series of field investigations, laboratory testing and data analysis. Field investigations were conducted to collect pollutant build-up and wash-off samples from residential roads and roof surfaces. Past research has identified that these impervious surfaces are the primary pollutant sources to urban stormwater runoff. A specially designed vacuum system and rainfall simulator were used in the collection of pollutant build-up and wash-off samples. The collected samples were tested for a range of physico-chemical parameters. Data analysis was conducted using both univariate and multivariate data analysis techniques. Analysis of build-up samples showed that pollutant loads accumulated on road surfaces are higher compared to the pollutant loads on roof surfaces. Furthermore, it was found that the fraction of solids smaller than 150 ìm is the most polluted particle size fraction in solids build-up on both roads and roof surfaces. The analysis of wash-off data confirmed that the simulated wash-off process adopted for this research agrees well with the general understanding of the wash-off process on urban impervious surfaces. The observed pollutant concentrations in wash-off from road surfaces were different to pollutant concentrations in wash-off from roof surfaces. Therefore, firstly, the identification of surrogate parameters was undertaken separately for roads and roof surfaces. Secondly, a common set of surrogate parameter relationships were identified for both surfaces together to evaluate urban stormwater quality. Surrogate parameters were identified for nitrogen, phosphorus and solids separately. Electrical conductivity (EC), total organic carbon (TOC), dissolved organic carbon (DOC), total suspended solids (TSS), total dissolved solids (TDS), total solids (TS) and turbidity (TTU) were selected as the relatively easy to measure parameters. Consequently, surrogate parameters for nitrogen and phosphorus were identified from the set of easy to measure parameters for both road surfaces and roof surfaces. Additionally, surrogate parameters for TSS, TDS and TS which are key indicators of solids were obtained from EC and TTU which can be direct field measurements. The regression relationships which were developed for surrogate parameters and key parameter of interest were of a similar format for road and roof surfaces, namely it was in the form of simple linear regression equations. The identified relationships for road surfaces were DTN-TDS:DOC, TP-TS:TOC, TSS-TTU, TDS-EC and TSTTU: EC. The identified relationships for roof surfaces were DTN-TDS and TSTTU: EC. Some of the relationships developed had a higher confidence interval whilst others had a relatively low confidence interval. The relationships obtained for DTN-TDS, DTN-DOC, TP-TS and TS-EC for road surfaces demonstrated good near site portability potential. Currently, best management practices are focussed on providing treatment measures for stormwater runoff at catchment outlets where separation of road and roof runoff is not found. In this context, it is important to find a common set of surrogate parameter relationships for road surfaces and roof surfaces to evaluate urban stormwater quality. Consequently DTN-TDS, TS-EC and TS-TTU relationships were identified as the common relationships which are capable of providing measurements of DTN and TS irrespective of the surface type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative approach to port decoupling and matching of arrays with tightly coupled elements is proposed. The method is based on the inherent decoupling effect obtained by feeding the orthogonal eigenmodes of the array. For this purpose, a modal feed network is connected to the array. The decoupled external ports of the feed network may then be matched independently by using conventional matching circuits. Such a system may be used in digital beam forming applications with good signal-to-noise performance. The theory is applicable to arrays with an arbitrary number of elements, but implementation is only practical for smaller arrays. The principle is illustrated by means of two examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An element spacing of less than half a wavelength introduces strong mutual coupling between the ports of compact antenna arrays. The strong coupling causes significant system performance degradation. A decoupling network may compensate for the mutual coupling. Alternatively, port decoupling can be achieved using a modal feed network. In response to an input signal at one of the input ports, this feed network excites the antenna elements in accordance with one of the eigenvectors of the array scattering parameter matrix. In this paper, a novel 4-element monopole array is described. The feed network of the array is implemented as a planar ring-type circuit in stripline with four coupled line sections. The new configuration offers a significant reduction in size, resulting in a very compact array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management and staff of the spatial science program at QUT. Student numbers discussion, Alumni News, Staff and Laboratories moving, Work Integrated Learning in 2010.