356 resultados para Textual simplification
Resumo:
Poem
Resumo:
Poem in international anthology
Resumo:
Interview and discussion on Robot University and AUTHENTIC IN ALL CAPS, transmedia creative works by Christy Dena.
Resumo:
Poem
Resumo:
Poem
Resumo:
Poem
Resumo:
Poem
Resumo:
Poem
Resumo:
Paris 1947 is the site of one of twentieth century fashion’s fictive highpoints. The New Look combined drama and poetics through an abiding rhetoric of elegance. In doing so it employed traditional modes of femininity, casting the woman of fashion in the guise of an ambiguous ‘new’ figure: half fairytale princess, half evil witch. This fashionable ideal was widely disseminated through key photographic representations, Willy Maywald’s 1947 image of the Bar Suit being a case in point. It was precisely such mythic formulations of ‘woman’ which Simone de Beauvoir was to take to task just two years later with the publication of The Second Sex. Driven by frustration with the status quo of real women, de Beauvoir recognised the role of fictive representations, both textual and visual in defining women. This paper reads key sections of The Second Sex through a comparative analysis of two iconic images of French women from 1947; Cartier-Bresson’s classic portrait of de Beauvoir and Willy Mayhold’s spectacular evocation of Christian Dior’s New Look. Cued by a compelling range of similarities between these images this paper explores links between fashion, feminism and fiction in mid-century French culture.
Resumo:
The rapid growth of visual information on Web has led to immense interest in multimedia information retrieval (MIR). While advancement in MIR systems has achieved some success in specific domains, particularly the content-based approaches, general Web users still struggle to find the images they want. Despite the success in content-based object recognition or concept extraction, the major problem in current Web image searching remains in the querying process. Since most online users only express their needs in semantic terms or objects, systems that utilize visual features (e.g., color or texture) to search images create a semantic gap which hinders general users from fully expressing their needs. In addition, query-by-example (QBE) retrieval imposes extra obstacles for exploratory search because users may not always have the representative image at hand or in mind when starting a search (i.e. the page zero problem). As a result, the majority of current online image search engines (e.g., Google, Yahoo, and Flickr) still primarily use textual queries to search. The problem with query-based retrieval systems is that they only capture users’ information need in terms of formal queries;; the implicit and abstract parts of users’ information needs are inevitably overlooked. Hence, users often struggle to formulate queries that best represent their needs, and some compromises have to be made. Studies of Web search logs suggest that multimedia searches are more difficult than textual Web searches, and Web image searching is the most difficult compared to video or audio searches. Hence, online users need to put in more effort when searching multimedia contents, especially for image searches. Most interactions in Web image searching occur during query reformulation. While log analysis provides intriguing views on how the majority of users search, their search needs or motivations are ultimately neglected. User studies on image searching have attempted to understand users’ search contexts in terms of users’ background (e.g., knowledge, profession, motivation for search and task types) and the search outcomes (e.g., use of retrieved images, search performance). However, these studies typically focused on particular domains with a selective group of professional users. General users’ Web image searching contexts and behaviors are little understood although they represent the majority of online image searching activities nowadays. We argue that only by understanding Web image users’ contexts can the current Web search engines further improve their usefulness and provide more efficient searches. In order to understand users’ search contexts, a user study was conducted based on university students’ Web image searching in News, Travel, and commercial Product domains. The three search domains were deliberately chosen to reflect image users’ interests in people, time, event, location, and objects. We investigated participants’ Web image searching behavior, with the focus on query reformulation and search strategies. Participants’ search contexts such as their search background, motivation for search, and search outcomes were gathered by questionnaires. The searching activity was recorded with participants’ think aloud data for analyzing significant search patterns. The relationships between participants’ search contexts and corresponding search strategies were discovered by Grounded Theory approach. Our key findings include the following aspects: - Effects of users' interactive intents on query reformulation patterns and search strategies - Effects of task domain on task specificity and task difficulty, as well as on some specific searching behaviors - Effects of searching experience on result expansion strategies A contextual image searching model was constructed based on these findings. The model helped us understand Web image searching from user perspective, and introduced a context-aware searching paradigm for current retrieval systems. A query recommendation tool was also developed to demonstrate how users’ query reformulation contexts can potentially contribute to more efficient searching.
Resumo:
Introduction: The accurate identification of tissue electron densities is of great importance for Monte Carlo (MC) dose calculations. When converting patient CT data into a voxelised format suitable for MC simulations, however, it is common to simplify the assignment of electron densities so that the complex tissues existing in the human body are categorized into a few basic types. This study examines the effects that the assignment of tissue types and the calculation of densities can have on the results of MC simulations, for the particular case of a Siemen’s Sensation 4 CT scanner located in a radiotherapy centre where QA measurements are routinely made using 11 tissue types (plus air). Methods: DOSXYZnrc phantoms are generated from CT data, using the CTCREATE user code, with the relationship between Hounsfield units (HU) and density determined via linear interpolation between a series of specified points on the ‘CT-density ramp’ (see Figure 1(a)). Tissue types are assigned according to HU ranges. Each voxel in the DOSXYZnrc phantom therefore has an electron density (electrons/cm3) defined by the product of the mass density (from the HU conversion) and the intrinsic electron density (electrons /gram) (from the material assignment), in that voxel. In this study, we consider the problems of density conversion and material identification separately: the CT-density ramp is simplified by decreasing the number of points which define it from 12 down to 8, 3 and 2; and the material-type-assignment is varied by defining the materials which comprise our test phantom (a Supertech head) as two tissues and bone, two plastics and bone, water only and (as an extreme case) lead only. The effect of these parameters on radiological thickness maps derived from simulated portal images is investigated. Results & Discussion: Increasing the degree of simplification of the CT-density ramp results in an increasing effect on the resulting radiological thickness calculated for the Supertech head phantom. For instance, defining the CT-density ramp using 8 points, instead of 12, results in a maximum radiological thickness change of 0.2 cm, whereas defining the CT-density ramp using only 2 points results in a maximum radiological thickness change of 11.2 cm. Changing the definition of the materials comprising the phantom between water and plastic and tissue results in millimetre-scale changes to the resulting radiological thickness. When the entire phantom is defined as lead, this alteration changes the calculated radiological thickness by a maximum of 9.7 cm. Evidently, the simplification of the CT-density ramp has a greater effect on the resulting radiological thickness map than does the alteration of the assignment of tissue types. Conclusions: It is possible to alter the definitions of the tissue types comprising the phantom (or patient) without substantially altering the results of simulated portal images. However, these images are very sensitive to the accurate identification of the HU-density relationship. When converting data from a patient’s CT into a MC simulation phantom, therefore, all possible care should be taken to accurately reproduce the conversion between HU and mass density, for the specific CT scanner used. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital (RBWH), Brisbane, Australia. The authors are grateful to the staff of the RBWH, especially Darren Cassidy, for assistance in obtaining the phantom CT data used in this study. The authors also wish to thank Cathy Hargrave, of QUT, for assistance in formatting the CT data, using the Pinnacle TPS. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.
Resumo:
This thesis makes several contributions towards improved methods for encoding structure in computational models of word meaning. New methods are proposed and evaluated which address the requirement of being able to easily encode linguistic structural features within a computational representation while retaining the ability to scale to large volumes of textual data. Various methods are implemented and evaluated on a range of evaluation tasks to demonstrate the effectiveness of the proposed methods.
Resumo:
In many English-speaking countries bilingual and multilingual speakers of English are integrated into mainstream classrooms, where the teacher is expected to help them “catch up” with speakers of the dominant language. In this presentation, I argue that we teach in culturally and linguistically diverse societies that are increasingly interconnected through a broadened range of multimodal and digital textual practices. Intuitively, one might expect that multimodal approaches are more equitable than exclusively print-based approaches because learners can draw from a broader range of semiotic resources. Yet the potentials of using multiple modes and new digital media to provide greater access to multiliteracies cannot be assumed. I draw on a case study of a multilingual language learner, Paweni, a Thai immigrant, describing how she and her peers negotiated cultural and linguistic difference. These encounters occur during multiliteracies lessons involving both print and digital texts. I theorise a “dialectic of access” to explain the reciprocal interaction between the agency of learners, modes, and media. I apply Giddens’ structuration theory to take into account the social structures – domination, signification, and legitimation – that played an important role in this dialectic of access.
Resumo:
Globalised communication in society today is characterised by multimodal forms of meaning making in the context of increased cultural and linguistic diversity. This research paper responds to these imperatives, applying Halliday's (1978, 1994) categories of systemic functional linguistics - representational or ideational, interactive or interpersonal, and compositional or textual meanings. Following the work of Kress (2000), van Leeuwen (Kress and van Leeuwen, 1996), and Jewitt (2006), multimodal semiotic analysis is applied to claymation movies that were collaboratively designed by Year 6 students. The significance of this analysis is the metalanguage for textual work in the kineikonic mode - moving images.
Resumo:
Globalised communication in society today is characterised by multimodal forms of meaning making in a context of increased cultural and linguistic diversity, calling for the teaching of multiliteracies. This transformation requires the development of a new metalanguage or language of description for the burgeoning and hybridised variety of text forms associated with information and multimedia technologies. To continue to teach to a narrow band of print-based genres, grammars, and skills is to ignore the reality of textual practices outside of schools. This paper draws from classroom research in a multiliteracies classroom to provide a multimodal analysis of a claymation movie. The significance of the paper is the synthesis of a multimodal metalanguage for teachers and students to describe the features of work in the kineikonic (moving image) mode.