326 resultados para Surgically assisted rapid palatal expansion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universities no longer equip graduates solely with the content knowledge of their discipline, but also with prospective employment skills. Professions also seek graduates who can ‘collaborate, share skills and knowledge, and communicate their ideas effectively’ (Kruck and Reif, 2001, p 37). However, as admission to university does not always guarantee that one is well equipped for the task, first year students also need guidance in the development of academic skills. This session describes two models of peer assisted learning embedded within the Torts and Legal Foundations B units at the Faculty of Law, Queensland University of Technology, and how they are used to supplement student understanding of substantive law with the development of academic and work-related skills. Student perceptions of the programs developed are considered, together with the challenges faced. Session participants will be asked to contribute to a discussion of these challenges and to offer ideas on their redress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years Australian Law Schools have implemented various forms of peer assisted learning or mentoring, including career mentoring by former students of final year students and orientation mentoring or tutoring by later year students of incoming first year students. The focus of these programs therefore is on the transition into or out of law school. There is not always as great an emphasis however, as part of this transition, on the use of law students belonging to the same unit cohort as a learning resource for each other within their degree. This is despite the claimed preference of Generation Y students for collaborative learning environments, authentic learning experiences and the development of marketable workplace skills. In the workplace, be it professional legal practice or otherwise, colleagues rely heavily on each other for information, support and guidance. In the undergraduate law degree at the Queensland University of Technology (‘QUT’) the Torts Student Peer Mentor Program aims to supplement a student’s understanding of the substantive law of torts with the development of life-long skills. As such it has the primary objective, albeit through discussion facilitated by more senior students, of encouraging first year students to develop for themselves the skills they need to be successful both as law students and as legal practitioners. Examples of such skills include those relevant to: preparation for assessment tasks; group work; problem solving, cognition and critical thinking; independent learning; and communication. Significantly, in this way, not only do the mentees benefit from involvement in the program, but the peer mentors, or program facilitators, themselves also benefit from their participation in the real world learning environment the program provides. This paper outlines the development and implementation of the above program, the pedagogy which influenced it, and its impact on student learning experiences

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: An arteriovenous loop (AVL) enclosed in a polycarbonate chamber in vivo, produces a fibrin exudate which acts as a provisional matrix for the development of a tissue engineered microcirculatory network. Objectives: By administering enoxaparin sodium - an inhibitor of fibrin polymerization, the significance of fibrin scaffold formation on AVL construct size (including the AVL, fibrin scaffold, and new tissue growth into the fibrin), growth, and vascularization were assessed and compared to controls. Methods: In Sprague Dawley rats, an AVL was created on femoral vessels and inserted into a polycarbonate chamber in the groin in 3 control groups (Series I) and 3 experimental groups (Series II). Two hours before surgery and 6 hours post-surgery, saline (Series I) or enoxaparin sodium (0.6 mg/kg, Series II) was administered intra-peritoneally. Thereafter, the rats were injected daily with saline (Series I) or enoxaparin sodium (1.5 mg/kg, Series II) until construct retrieval at 3, 10, or 21 days. The retrieved constructs underwent weight and volume measurements, and morphologic/morphometric analysis of new tissue components. Results: Enoxaparin sodium treatment resulted in the development of smaller AVL constructs at 3, 10, and 21 days. Construct weight and volume were significantly reduced at 10 days (control weight 0.337 ± 0.016 g [Mean ± SEM] vs treated 0.228 ± 0.048, [P < .001]: control volume 0.317 ± 0.015 mL vs treated 0.184 ± 0.039 mL [P < .01]) and 21 days (control weight 0.306 ± 0.053 g vs treated 0.198 ± 0.043 g [P < .01]: control volume 0.285 ± 0.047 mL vs treated 0.148 ± 0.041 mL, [P < .01]). Angiogenesis was delayed in the enoxaparin sodium-treated constructs with the absolute vascular volume significantly decreased at 10 days (control vascular volume 0.029 ± 0.03 mL vs treated 0.012 ± 0.002 mL [P < .05]). Conclusion: In this in vivo tissue engineering model, endogenous, extra-vascularly deposited fibrin volume determines construct size and vascular growth in the first 3 weeks and is, therefore, critical to full construct development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Banana bunchy top disease (BBTD) caused by banana bunchy top virus (BBTV) was radioactively detected by nucleic acid hybridization techniques. Results showed that, 32P-labelled insert of pBT338 was hybridized with nucleic acid extracts from BBTV-infected plants from Egypt and Australia but not with those from CMV-infected plants from Egypt. Results revealed that BBTV was greatly detected in midrib, roots, meristem, corm, leaves and pseudostem respectively. BBTV was also detected in symptomless young plants prepared from diseased plant materials grown under tissue culture conditions but was not present in those performed from healthy plant materials. The sensitivity of dot blot and Southern blot hybridizations for the detection of BBTV was also performed for the detection of BBTV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniform DNA distribution in tumors is a prerequisite step for high transfection efficiency in solid tumors. To improve the transfection efficiency of electrically assisted gene delivery to solid tumors in vivo, we explored how tumor histological properties affected transfection efficiency. In four different tumor types (B16F1, EAT, SA-1 and LPB), proteoglycan and collagen content was morphometrically analyzed, and cell size and cell density were determined in paraffin-embedded tumor sections under a transmission microscope. To demonstrate the influence of the histological properties of solid tumors on electrically assisted gene delivery, the correlation between histological properties and transfection efficiency with regard to the time interval between DNA injection and electroporation was determined. Our data demonstrate that soft tumors with larger spherical cells, low proteoglycan and collagen content, and low cell density are more effectively transfected (B16F1 and EAT) than rigid tumors with high proteoglycan and collagen content, small spindle-shaped cells and high cell density (LPB and SA-1). Furthermore, an optimal time interval for increased transfection exists only in soft tumors, this being in the range of 5-15 min. Therefore, knowledge about the histology of tumors is important in planning electrogene therapy with respect to the time interval between DNA injection and electroporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a recent rapid expansion of the range of applications of low-temperature plasma processing in Si-based photovoltaic (PV) technologies. The desire to produce Si-based PV materials at an acceptable cost with consistent performance and reproducibility has stimulated a large number of major research and research infrastructure programs, and a rapidly increasing number of publications in the field of low-temperature plasma processing for Si photovoltaics. In this article, we introduce the low-temperature plasma sources for Si photovoltaic applications and discuss the effects of low-temperature plasma dissociation and deposition on the synthesis of Si-based thin films. We also examine the relevant growth mechanisms and plasma diagnostics, Si thin-film solar cells, Si heterojunction solar cells and silicon nitride materials for antireflection and surface passivation. Special attention is paid to the low-temperature plasma interactions with Si materials including hydrogen interaction, wafer cleaning, masked or mask-free surface texturization, the direct formation of p-n junction, and removal of phosphorus silicate glass or parasitic emitters. The chemical and physical interactions in such plasmas with Si surfaces are analyzed. Several examples of the plasma processes and techniques are selected to represent a variety of applications aimed at the improvement of Si-based solar cell performance. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling the electrical resistance of granular thin films is of great importance for many applications, yet a full understanding of electron transport in such films remains a major challenge. We have studied experimentally and by model calculations the temperature dependence of the electrical resistance of ultrathin gold films at temperatures between 2 K and 300 K. Using sputter deposition, the film morphology was varied from a discontinuous film of weakly coupled meandering islands to a continuous film of strongly coupled coalesced islands. In the weak-coupling regime, we compare the regular island array model, the cotunneling model, and the conduction percolation model with our experimental data. We show that the tunnel barriers and the Coulomb blockade energies are important at low temperatures and that the thermal expansion of the substrate and the island resistance affect the resistance at high temperatures. At low temperatures our experimental data show evidence for a transition from electron cotunneling to sequential tunneling but the data can also be interpreted in terms of conduction percolation. The resistivity and temperature coefficient of resistance of the meandering gold islands are found to resemble those of gold nanowires. We derive a simple expression for the temperature at which the resistance changes from non-metal-like behavior into metal-like behavior. In the case of strong island coupling, the total resistance is solely determined by the Ohmic island resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma sheath, nanostructure growth, and thermal models are used to describe carbon nanofiber (CNF) growth and heating in a low-temperature plasma. It is found that when the H2 partial pressure is increased, H atom recombination and H ion neutralization are the main mechanisms responsible for energy release on the catalyst surface. Numerical results also show that process parameters such as the substrate potential, electron temperature and number density mainly affect the CNF growth rate and plasma heating at low catalyst temperatures. In contrast, gas pressure, ion temperature, and the C2H2:H2 supply ratio affect the CNF growth at all temperatures. It is shown that plasma-related processes substantially increase the catalyst particle temperature, in comparison to the substrate and the substrate-holding platform temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of one-dimensional AlN nanostructures commonly requires high process temperatures (>900 °C), metal catalyst, and hazardous gas/powder precursors. We report on a simple, single-step, catalyst-free, plasma-assisted growth of dense patterns of size-uniform single-crystalline AlN nanorods at a low substrate temperature (∼650 °C) without any catalyst or hazardous precursors. This unusual growth mechanism is based on highly effective plasma dissociation of N2 molecules, localized species precipitation on AlN islands, and reduced diffusion on the nitrogen-rich surface. This approach can also be used to produce other high-aspect-ratio oxide and nitride nanostructures for applications in energy conversion, sensing, and optoelectronics. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism and model for the vertical growth of platelet-structured vertically aligned single-crystalline carbon nanostructures by the formation of graphene layers on a flat top surface are proposed and verified experimentally. It is demonstrated that plasma-related effects lead to self-sharpening of tapered nanocones to form needlelike nanostructures, in a good agreement with the predicted dependence of the radius of a nanocone's flat top on the incoming ion flux and surface temperature. The growth mechanism is relevant to a broad class of nanostructures including nanotips, nanoneedles, and nanowires and can be used to improve the predictability of nanofabrication processes. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective technique to improve the precision and throughput of energetic ion condensation through dielectric nanoporous templates and reduce nanopore clogging by using finely tuned pulsed bias is proposed. Multiscale numerical simulations of ion deposition show the possibility of controlling the dynamic charge balance on the upper template's surface to minimize ion deposition on nanopore sidewalls and to deposit ions selectively on the substrate surface in contact with the pore opening. In this way, the shapes of nanodots in template-assisted nanoarray fabrication can be effectively controlled. The results are applicable to various processes involving porous dielectric nanomaterials and dense nanoarrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, effective and innovative approach based on low-pressure, thermally nonequilibrium, high-density inductively coupled plasmas is proposed to rapidly synthesize Si quantum dots (QDs) embedded in an amorphous SiC (a-SiC) matrix at a low substrate temperature and without any commonly used hydrogen dilution. The experimental results clearly demonstrate that uniform crystalline Si QDs with a size of 3-4 nm embedded in the silicon-rich (carbon content up to 10.7at.%) a-SiC matrix can be formed from the reactive mixture of silane and methane gases, with high growth rates of ∼1.27-2.34 nm s-1 and at a low substrate temperature of 200 °C. The achievement of the high-rate growth of Si QDs embedded in the a-SiC without any commonly used hydrogen dilution is discussed based on the unique properties of the inductively coupled plasma-based process. This work is particularly important for the development of the all-Si tandem cell-based third generation photovoltaic solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative custom-designed inductively coupled plasma-assisted RF magnetron sputtering deposition system has been developed to synthesize B-doped microcrystalline silicon thin films using a pure boron sputtering target in a reactive silane and argon gas mixture. Films were deposited using different boron target powers ranging from 0 to 350 W at a substrate temperature of 250 °C. The effect of the boron target power on the structural and electrical properties of the synthesized films was extensively investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and Hall-effect system. It is shown that, with an initial increase of the boron target power from 0 to 300 W, the structural and electrical properties of the B-doped microcrystalline films are improved. However, when the target power is increased too much (e.g. to 350 W), these properties become slightly worse. The variation of the structural and electrical properties of the synthesized B-doped microcrystalline thin films is related to the incorporation of boron atoms during the crystallization and doping of silicon in the inductively coupled plasma-based process. This work is particularly relevant to the microcrystalline silicon-based p-i-n junction solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, effective, and innovative approach based on ion-assisted self-organization is proposed to synthesize size-selected Si quantum dots (QDs) on SiC substrates at low substrate temperatures. Using hybrid numerical simulations, the formation of Si QDs through a self-organization approach is investigated by taking into account two distinct cases of Si QD formation using the ionization energy approximation theory, which considers ionized in-fluxes containing Si3+ and Si1+ ions in the presence of a microscopic nonuniform electric field induced by a variable surface bias. The results show that the highest percentage of the surface coverage by 1 and 2 nm size-selected QDs was achieved using a bias of -20 V and ions in the lowest charge state, namely, Si1+ ions in a low substrate temperature range (227-327 °C). As low substrate temperatures (≤500 °C) are desirable from a technological point of view, because (i) low-temperature deposition techniques are compatible with current thin-film Si-based solar cell fabrication and (ii) high processing temperatures can frequently cause damage to other components in electronic devices and destroy the tandem structure of Si QD-based third-generation solar cells, our results are highly relevant to the development of the third-generation all-Si tandem photovoltaic solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-organized growth of uniform carbon nanocone arrays using low-temperature non-equilibrium Ar + H 2 + CH 4 plasma-enhanced chemical vapor deposition (PECVD) is studied. The experiment shows that size-, shape-, and position-uniform carbon nanocone arrays can develop even from non-uniformly fragmented discontinuous nickel catalyst films. A three-stage scenario is proposed where the primary nanocones grow on large catalyst particles during the first stage, and the secondary nanocones are formed between the primary ones at the second stage. Finally, plasma-related effects lead to preferential growth of the secondary nanocones and eventually a uniform nanopattern is formed. This does not happen in a CVD process with the same gas feedstock and surface temperature. The proposed three-stage growth scenario is supported by the numerical experiment which generates nanocone arrays very similar to the experimentally synthesized nanopatterns. The self-organization process is explained in terms of re-distribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array. Our results suggest that plasma-related self-organization effects can significantly reduce the non-uniformity of carbon nanostructure arrays which commonly arises from imperfections in fragmented Ni-based catalyst films.