210 resultados para Species invasions
Resumo:
Subsampling is a common method for estimating the abundance of species in trawl catches. However, the accuracy of subsampling in representing the total catch has not been assessed. To estimate one possible source of bias due to subsampling, we tested whether the position on trawler sorting trays from which subsamples were taken affected their ability to represent species in catches. This was done by sorting catches into 10 kg subsamples and comparing subsamples taken from different positions on the sorting tray. Comparisons were made after species were grouped into three categories of abundance, either 'rare', 'common' or 'abundant'. A generalised linear model analysis showed that taking subsamples from different positions on the sorting tray had no major effect on estimating the total numbers or weights of fish or invertebrates, or the total number of fish or invertebrate taxa, recorded in each position. Some individual taxa showed differences between positions on the sorting tray (11.5% of taxa ina three-position design; 25% in a five-position design). But consistent and meaningful patterns in the position of these taxa on the sorting tray could only be seen for the pony fish Leiognathus moretoniensis and the saucer scallop Amusium pleuronectes. Because most bycatch laxa are well mixed throughout the catch, subsamples can be taken from any position on trawler sorting trays without introducing bias.
Resumo:
The biomass and species composition of tropical phytoplankton in Albatross Bay, Gulf of Carpentaria, northern Australia, were examined monthly for 6 yr (1986 to 1992). Chlorophyll a (chl a) concentrations were highest (2 to 5.7 mu g l(-1)) in the wet season at inshore sites, usually coinciding with low salinities (30 to 33 ppt) and high temperatures (29 to 32 degrees C). At the offshore sites chi a concentrations were lower (0.2 to 2 mu g l(-1)) and did not vary seasonally. Nitrate and phosphate concentrations were generally low (0 to 3.68 mu M and 0.09 to 3 mu M for nitrate and phosphate respectively), whereas silicate was present in concentrations in the range 0.19 to 13 mu M. The phytoplankton community was dominated by diatoms, particularly at the inshore sites, as determined by a combination of microscopic and high-performance liquid chromatography (HPLC) pigment analyses. At the offshore sites the proportion of green flagellates increased. The cyanobacterium genus Trichodesmium and the diatom genera Chaetoceros, Rhizosolenia, Bacteriastrum and Thalassionema dominated the phytoplankton caught in 37 mu m mesh nets; however, in contrast to many other coastal areas studied worldwide there was no distinct species succession of the diatoms and only Trichodesmium showed seasonal changes in abundance. This reflects a stable phytoplankton community in waters without pulses of physical and chemical disturbances. These results are discussed in the context of the commercial prawn fishery in the Gulf of Carpentaria and the possible effect of phytoplankton on prawn larval growth and survival.
Resumo:
An FAO/IAEA Co-ordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade” was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex – Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex – Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, B. papayae, B. philippinensis and B. invadens, the latter three species were synonymized with B. dorsalis. Of the five target pest taxa studied, only B. dorsalis and B. carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish B. dorsalis from B. carambolae. Ceratitis FAR Complex (C. fasciventris, C. anonae, C. rosa) – Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, C. fasciventris (F1 and F2), C. rosa and a new species related to C. rosa (R2). The biological limits within C. fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) – Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level.
Resumo:
Tephritid fruit flies (Diptera: Tephritidae) are considered by far the most important group of horticultural pests worldwide. Female fruit flies lay eggs directly into ripening fruit, where the maggots feed causing fruit loss. Each and every continent is plagued by a number of fruit fly pests, both indigenous as well as invasive ones, causing tremendous economic losses. In addition to the direct losses through damage, they can negatively impact commodity trade through restrictions to market access. The quarantine and regulatory controls put in place to manage them are expensive, while the on-farm control costs and loss of crop affect the general well-being of growers. These constraints can have huge implications on loss in revenues and limitations to developing fruit and vegetable-based agroindustries in developing, emergent and developed nations. Because fruit flies are a global problem, the study of their biology and management requires significant international attention to overcome the hurdles they pose. The Joint Food and Agriculture Organisation / International Atomic Energy Agency (FAO/IAEA) Programme on Nuclear Techniques in Food and Agriculture has been on the foreground in assisting Member States in developing and validating environment-friendly fruit fly suppression systems to support viable fresh fruit and vegetable production and export industries. Such international attention has resulted in the successful development and validation of a Sterile Insect Technique (SIT) package for the Mediterranean fruit fly. Although demands for R&D support with respect to Mediterranean fruit fly are diminishing due to successful integration of this package into sustainable control programmes against this pest in many countries, there were increasing demands from Member States in Africa, Asia and Latin America, to address other major fruit fly pests and a related, but sometimes neglected issue of tephritid species complexes of economic importance. Any research, whether it is basic or applied, requires a taxonomic framework that provides reliable and universally recognized entities and names. Among the currently recognized major fruit fly pests, there are groups of species whose morphology is very similar or identical, but biologically they are distinct species. As such, some insect populations that are grouped taxonomically within the same pest species, display different biological and genetic traits and show reproductive isolation which suggest that they are different species. On the other hand, different species may have been taxonomically described, but there may be doubt as to whether they actually represent distinct biological species or merely geographical variants of the same species. This uncertain taxonomic status has practical implications on the effective development and use of the SIT against such complexes, particularly at the time of determining which species to mass-rear, and significantly affects international movement of fruit and vegetables through the establishment of trade barriers to important agricultural commodities which are hosts to these pest tephritid species...
Resumo:
Species distribution modelling (SDM) typically analyses species’ presence together with some form of absence information. Ideally absences comprise observations or are inferred from comprehensive sampling. When such information is not available, then pseudo-absences are often generated from the background locations within the study region of interest containing the presences, or else absence is implied through the comparison of presences to the whole study region, e.g. as is the case in Maximum Entropy (MaxEnt) or Poisson point process modelling. However, the choice of which absence information to include can be both challenging and highly influential on SDM predictions (e.g. Oksanen and Minchin, 2002). In practice, the use of pseudo- or implied absences often leads to an imbalance where absences far outnumber presences. This leaves analysis highly susceptible to ‘naughty-noughts’: absences that occur beyond the envelope of the species, which can exert strong influence on the model and its predictions (Austin and Meyers, 1996). Also known as ‘excess zeros’, naughty noughts can be estimated via an overall proportion in simple hurdle or mixture models (Martin et al., 2005). However, absences, especially those that occur beyond the species envelope, can often be more diverse than presences. Here we consider an extension to excess zero models. The two-staged approach first exploits the compartmentalisation provided by classification trees (CTs) (as in O’Leary, 2008) to identify multiple sources of naughty noughts and simultaneously delineate several species envelopes. Then SDMs can be fit separately within each envelope, and for this stage, we examine both CTs (as in Falk et al., 2014) and the popular MaxEnt (Elith et al., 2006). We introduce a wider range of model performance measures to improve treatment of naughty noughts in SDM. We retain an overall measure of model performance, the area under the curve (AUC) of the Receiver-Operating Curve (ROC), but focus on its constituent measures of false negative rate (FNR) and false positive rate (FPR), and how these relate to the threshold in the predicted probability of presence that delimits predicted presence from absence. We also propose error rates more relevant to users of predictions: false omission rate (FOR), the chance that a predicted absence corresponds to (and hence wastes) an observed presence, and the false discovery rate (FDR), reflecting those predicted (or potential) presences that correspond to absence. A high FDR may be desirable since it could help target future search efforts, whereas zero or low FOR is desirable since it indicates none of the (often valuable) presences have been ignored in the SDM. For illustration, we chose Bradypus variegatus, a species that has previously been published as an exemplar species for MaxEnt, proposed by Phillips et al. (2006). We used CTs to increasingly refine the species envelope, starting with the whole study region (E0), eliminating more and more potential naughty noughts (E1–E3). When combined with an SDM fit within the species envelope, the best CT SDM had similar AUC and FPR to the best MaxEnt SDM, but otherwise performed better. The FNR and FOR were greatly reduced, suggesting that CTs handle absences better. Interestingly, MaxEnt predictions showed low discriminatory performance, with the most common predicted probability of presence being in the same range (0.00-0.20) for both true absences and presences. In summary, this example shows that SDMs can be improved by introducing an initial hurdle to identify naughty noughts and partition the envelope before applying SDMs. This improvement was barely detectable via AUC and FPR yet visible in FOR, FNR, and the comparison of predicted probability of presence distribution for pres/absence.
Resumo:
The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.
Resumo:
The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.
Resumo:
This report is the result of a small-scale experiment looking at improving methods for evaluating environmental laws. The objective in this research was to evaluate the effectiveness of the precautionary principle – an accepted principle of international environmental law – in the context of Australia’s endangered species. Two case studies were selected by our team: the (Great) White Shark and an endangered native Australian plant known as Tylophora Linearis.
Resumo:
Expressed sequence tag (EST) databases provide a primary source of nuclear DNA sequences for genetic marker development in non-model organisms. To date, the process has been relatively inefficient for several reasons: - 1) priming site polymorphism in the template leads to inferior or erratic amplification; - 2) introns in the target amplicon are too large and/or numerous to allow effective amplification under standard screening conditions, and; - 3) at least occasionally, a PCR primer straddles an exon–intron junction and is unable to bind to genomic DNA template. The first is only a minor issue for species or strains with low heterozygosity but becomes a significant problem for species with high genomic variation, such as marine organisms with extremely large effective population sizes. Problems arising from unanticipated introns are unavoidable but are most pronounced in intron-rich species, such as vertebrates and lophotrochozoans. We present an approach to marker development in the Pacific oyster Crassostrea gigas, a highly polymorphic and intron-rich species, which minimizes these problems, and should be applicable to other non-model species for which EST databases are available. Placement of PCR primers in the 3′ end of coding sequence and 3′ UTR improved PCR success rate from 51% to 97%. Almost all (37 of 39) markers developed for the Pacific oyster were polymorphic in a small test panel of wild and domesticated oysters.
Resumo:
Objective The human Ureaplasma species are the microbes most frequently isolated from placentae of women who deliver preterm. The role of Ureaplasma species has been investigated in pregnancies at <32 weeks of gestation, but currently no studies have determined the prevalence of ureaplasmas in moderately preterm and late-preterm (hereafter, “moderate/late preterm”) infants, the largest cohort of preterm infants. Methods Women delivering moderate/late preterm infants (n = 477) and their infants/placentae (n = 535) were recruited, and swab specimens of chorioamnion tissue, chorioamnion tissue specimens, and cord blood specimens were obtained at delivery. Swab and tissue specimens were cultured and analyzed by 16S ribosomal RNA polymerase chain reaction (PCR) for the presence of microorganisms, while cord blood specimens were analyzed for the presence of cytokines, chemokines, and growth factors. Results We detected microorganisms in 10.6% of 535 placentae (443 were delivered late preterm and 92 were delivered at term). Significantly, Ureaplasma species were the most prevalent microorganisms, and their presence alone was associated with histologically confirmed chorioamnionitis in moderate/late preterm and term placentae (P < .001). The presence of ureaplasmas in the chorioamnion was also associated with elevated levels of granulocyte colony-stimulating factor (P = .02). Conclusions These findings have important implications for infection and adverse pregnancy outcomes throughout gestation and should be of major consideration for obstetricians and neonatologists.
Resumo:
Our attention has been drawn to lapsi and errors in a recent publication in this journal concerning Cricotopus Wulp (Diptera: Chironomidae) (Drayson et al., 2015).
Resumo:
The silver-headed antechinus (Antechinus argentus) is one of Australia’s most recently described mammals, and the single known population at Kroombit Tops in south-east Queensland is threatened. Nothing is known of the species’ ecology, so during 2014 we collected faecal pellets each month (March–September) from a population at the type locality to gather baseline data on diet composition. A total of 38 faecal pellets were collected from 12 individuals (eight females, four males) and microscopic analysis of pellets identified seven invertebrate orders, with 70% combined mean composition of beetles (Coleoptera: 38%) and cockroaches (Blattodea: 32%). Other orders that featured as prey were ants, crickets/grasshoppers, butterflies/moths, spiders, and true bugs. Given that faecal pellets could only be collected from a single habitat type (Eucalyptus montivaga high-altitude open forest) and location, this is best described as a generalist insectivorous diet that is characteristic of other previously studied congeners.
Resumo:
Acoustics is a rich source of environmental information that can reflect the ecological dynamics. To deal with the escalating acoustic data, a variety of automated classification techniques have been used for acoustic patterns or scene recognition, including urban soundscapes such as streets and restaurants; and natural soundscapes such as raining and thundering. It is common to classify acoustic patterns under the assumption that a single type of soundscapes present in an audio clip. This assumption is reasonable for some carefully selected audios. However, only few experiments have been focused on classifying simultaneous acoustic patterns in long-duration recordings. This paper proposes a binary relevance based multi-label classification approach to recognise simultaneous acoustic patterns in one-minute audio clips. By utilising acoustic indices as global features and multilayer perceptron as a base classifier, we achieve good classification performance on in-the-field data. Compared with single-label classification, multi-label classification approach provides more detailed information about the distributions of various acoustic patterns in long-duration recordings. These results will merit further biodiversity investigations, such as bird species surveys.
Resumo:
Coptotermes Wasmann (Isoptera: Rhinotermitidae) is one of the most economically important subterranean termite genera and some species are successful invaders. However, despite its important pest status, the taxonomic validity of many named Coptotermes species remains unclear. In this study, we reviewed all named species within the genus and investigated evidence supporting the validity of each named species. Species were systematically scrutinized according to the region of their original description: Southeast Asia, India, China, Africa, the Neotropics, and Australia. We estimate that of the currently 69 named species described by accepted nomenclatural rules, only 21 taxa have solid evidence for validity, 44 names have uncertain status, and the remaining species names should be synonymized or were made unavailable. Species with high degrees of invasiveness may be known under additional junior synonyms due to independent parochial descriptions. Molecular data for a vast majority of species are scarce and significant effort is needed to complete the taxonomic and phylogenetic revision of the genus. Because of the wide distribution of Coptotermes, we advocate for an integrative taxonomic effort to establish the distribution of each putative species, provide specimens and corresponding molecular data, check original descriptions and type specimens (if available), and provide evidence for a more robust phylogenetic position of each species. This study embodies both consensus and contention of those studying Coptotermes and thus pinpoints the current uncertainty of many species. This project is intended to be a roadmap for identifying those Coptotermes species names that need to be more thoroughly investigated, as an incentive to complete a necessary revision process.
Resumo:
The frugivorous 'true' fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a non-resourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: - (i) mating pairs were aggregated or non-aggregated; - (ii) mating system was resource or non-resource based; - (iii) flies utilised possible landmarks (tall trees over short) as mate-rendezvous sites, and; - (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: - (i) mating pairs were aggregated; - (ii) mating nearly always occurred in tall trees over short; - (iii) mating was non-resource based, and; - (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behaviour align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a non-resource based, aggregation system for which we also have evidence that land-marking may be involved. This article is protected by copyright. All rights reserved.