200 resultados para Soybenas strains
Resumo:
Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections. For successful colonisation of the urinary tract, UPEC employ multiple surface-exposed or secreted virulence factors, including adhesins and iron uptake systems. Whilst individual UPEC strains and their virulence factors have been the focus of extensive research, there have been no outer membrane (OM) proteomic studies based on large clinical UPEC collections, primarily due to limitations of traditional methods. In this study, a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles (OMVs) was developed for the characterisation of the UPEC surface-associated proteome. The method was applied to compare the OM proteome of fifty-four UPEC isolates, resulting in the identification of 8789 proteins, consisting of 619 unique proteins, which were subsequently interrogated for their subcellular origin, prevalence and homology to characterised virulence factors. Multiple distinct virulence-associated proteins were identified, including two novel putative iron uptake proteins, an uncharacterised type of chaperone-usher fimbriae and various highly prevalent hypothetical proteins. Our results give fundamental insight into the physiology of UPEC and provide a framework for understanding the composition of the UPEC OM proteome.
Resumo:
Hamstring strains in the Australian Football League (AFL) have a high incidence (15%) and recurrence rate (34%) with lateral hamstring injuries most common (83%). Retrospective studies have found significant muscle volume asymmetries ≤23 months post hamstring injury; however examination of the association between hamstring strains and muscle asymmetry has not been investigated prospectively. This study presents baseline data from a longitudinal study focusing on individual hamstring morphometry in uninjured and injured semi-elite AFL players.
Resumo:
Staphylococcus epidermidis is a biofilm-producing commensal organism found ubiquitously on human skin and mucous membranes, as well as on animals and in the environment. Biofilm formation enables this organism to evade the host immune system. Colonization of percutaneous devices or implanted medical devices allows bacteria access to the bloodstream. Isolation of this organism from blood cultures may represent either contamination during the blood collection procedure or true bacteremia. S. epidermidis bloodstream infections may be indolent compared with other bacteria. Isolation of S. epidermidis from a blood culture may present a management quandary for clinicians. Over-treatment may lead to patient harm and increases in healthcare costs. There are numerous reports indicating the difficulty of predicting clinical infection in patients with positive blood cultures with this organism. No reliable phenotypic or genotypic algorithms currently exist to predict the pathogenicity of a S. epidermidis bloodstream infection. This review will discuss the latest advances in identification methods, global population structure, pathogenicity, biofilm formation, antimicrobial resistance and clinical significance of the detection of S. epidermidis in blood cultures. Previous studies that have attempted to discriminate between invasive and contaminating strains of S. epidermidis in blood cultures will be analyzed.
Resumo:
Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied.
Resumo:
Expressed sequence tag (EST) databases provide a primary source of nuclear DNA sequences for genetic marker development in non-model organisms. To date, the process has been relatively inefficient for several reasons: - 1) priming site polymorphism in the template leads to inferior or erratic amplification; - 2) introns in the target amplicon are too large and/or numerous to allow effective amplification under standard screening conditions, and; - 3) at least occasionally, a PCR primer straddles an exon–intron junction and is unable to bind to genomic DNA template. The first is only a minor issue for species or strains with low heterozygosity but becomes a significant problem for species with high genomic variation, such as marine organisms with extremely large effective population sizes. Problems arising from unanticipated introns are unavoidable but are most pronounced in intron-rich species, such as vertebrates and lophotrochozoans. We present an approach to marker development in the Pacific oyster Crassostrea gigas, a highly polymorphic and intron-rich species, which minimizes these problems, and should be applicable to other non-model species for which EST databases are available. Placement of PCR primers in the 3′ end of coding sequence and 3′ UTR improved PCR success rate from 51% to 97%. Almost all (37 of 39) markers developed for the Pacific oyster were polymorphic in a small test panel of wild and domesticated oysters.