469 resultados para Solution Space


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While much narrative inquiry is concerned with issues of self and identity, doing study on the processes (the how) of self-making offers ongoing challenges to methodology. This article explores the creation of a dialogic space that assisted young adolescents to write about themselves and their daily lives using email journals as an alternative to face-to-face interviews. With the researcher acting as a listener-responder, and in the absence of researcher-designed questions, a dynamic field was opened up for participant-led self-making to emerge over a six month period of self-reflective written expression. The article describes a shared email relationship based on a dialogic pattern of thinking, writing, listening and response intended to foster participants’ voices as ontological narratives of self. Findings show the use of email journals created a synergy for self-disclosure and a safe space for self-expression where the willingness of participants to be themselves was encouraged. The self-representations of a specific group of gifted young adolescents thus emerged as written versions of “who” they are —offering data that differs from interview approaches and contributing to discussion of the value of ontology narratives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Video surveillance systems using Closed Circuit Television (CCTV) cameras, is one of the fastest growing areas in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. This work attempts to address these problems by proposing an automatic suspicious behaviour detection which utilises contextual information. The utilisation of contextual information is done via three main components: a context space model, a data stream clustering algorithm, and an inference algorithm. The utilisation of contextual information is still limited in the domain of suspicious behaviour detection. Furthermore, it is nearly impossible to correctly understand human behaviour without considering the context where it is observed. This work presents experiments using video feeds taken from CAVIAR dataset and a camera mounted on one of the buildings Z-Block) at the Queensland University of Technology, Australia. From these experiments, it is shown that by exploiting contextual information, the proposed system is able to make more accurate detections, especially of those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information gives critical feedback to the system designers to refine the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The case study 3 team viewed the mitigation of noise and air pollution generated in the transport corridor that borders the study site to be a paramount driver of the urban design solution. These key urban planning strategies were adopted: * Spatial separation from transport corridor pollution source. A linear green zone and environmental buffer was proposed adjacent to the transport corridor to mitigate the environmental noise and air quality impacts of the corridor, and to offer residents opportunities for recreation * Open space forming the key structural principle for neighbourhood design. A significant open space system underpins the planning and manages surface water flows. * Urban blocks running on east-west axis. The open space rationale emphasises an east-west pattern for local streets. Street alignment allows for predominantly north-south facing terrace type buildings which both face the street and overlook the green courtyard formed by the perimeter buildings. The results of the ESD assessment of the typologies conclude that the design will achieve good outcomes through: * Lower than average construction costs compared with other similar projects * Thermal comfort; A good balance between daylight access and solar gains is achieved * The energy rating achieved for the units is 8.5 stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing recommendation systems often recommend products to users by capturing the item-to-item and user-to-user similarity measures. These types of recommendation systems become inefficient in people-to-people networks for people to people recommendation that require two way relationship. Also, existing recommendation methods use traditional two dimensional models to find inter relationships between alike users and items. It is not efficient enough to model the people-to-people network with two-dimensional models as the latent correlations between the people and their attributes are not utilized. In this paper, we propose a novel tensor decomposition-based recommendation method for recommending people-to-people based on users profiles and their interactions. The people-to-people network data is multi-dimensional data which when modeled using vector based methods tend to result in information loss as they capture either the interactions or the attributes of the users but not both the information. This paper utilizes tensor models that have the ability to correlate and find latent relationships between similar users based on both information, user interactions and user attributes, in order to generate recommendations. Empirical analysis is conducted on a real-life online dating dataset. As demonstrated in results, the use of tensor modeling and decomposition has enabled the identification of latent correlations between people based on their attributes and interactions in the network and quality recommendations have been derived using the 'alike' users concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter examines the changing landscape of literacy in the early years and considers how the diverse spaces and places in which early literacy learning is promoted and takes place can be conceptualised and researched. We argue that early literacy research needs to extend beyond a language focus to become attentive to the embodied, material dimensions of learning environments. The discussion is organised in terms of three kinds of spaces within which children encounter opportunities to participate in communication and representational practices. These are domestic spaces, commercial spaces and spaces of formal education. Theories of spatiality and material semiotics provide the conceptual tools for interpreting research studies located in these spaces. Implications for educators are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural convection thermal boundary layer adjacent to an inclined flat plate and inclined walls of an attic space subject to instantaneous and ramp heating and cooling is investigated. A scaling analysis has been performed to describe the flow behaviour and heat transfer. Major scales quantifying the flow velocity, flow development time, heat transfer and the thermal and viscous boundary layer thicknesses at different stages of the flow development are established. Scaling relations of heating-up and cooling-down times and heat transfer rates have also been reported for the case of attic space. The scaling relations have been verified by numerical simulations over a wide range of parameters. Further, a periodic temperature boundary condition is also considered to show the flow features in the attic space over diurnal cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the growing number of XML documents on theWeb it becomes essential to effectively organise these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. However, many issues arise in discovering knowledge from these types of semi-structured documents due to their heterogeneity and structural irregularity. Most of the existing research on clustering techniques focuses only on one feature of the XML documents, this being either their structure or their content due to scalability and complexity problems. The knowledge gained in the form of clusters based on the structure or the content is not suitable for reallife datasets. It therefore becomes essential to include both the structure and content of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both these kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. The overall objective of this thesis is to address these issues by: (1) proposing methods to utilise frequent pattern mining techniques to reduce the dimension; (2) developing models to effectively combine the structure and content of XML documents; and (3) utilising the proposed models in clustering. This research first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. A clustering framework with two types of models, implicit and explicit, is developed. The implicit model uses a Vector Space Model (VSM) to combine the structure and the content information. The explicit model uses a higher order model, namely a 3- order Tensor Space Model (TSM), to explicitly combine the structure and the content information. This thesis also proposes a novel incremental technique to decompose largesized tensor models to utilise the decomposed solution for clustering the XML documents. The proposed framework and its components were extensively evaluated on several real-life datasets exhibiting extreme characteristics to understand the usefulness of the proposed framework in real-life situations. Additionally, this research evaluates the outcome of the clustering process on the collection selection problem in the information retrieval on the Wikipedia dataset. The experimental results demonstrate that the proposed frequent pattern mining and clustering methods outperform the related state-of-the-art approaches. In particular, the proposed framework of utilising frequent structures for constraining the content shows an improvement in accuracy over content-only and structure-only clustering results. The scalability evaluation experiments conducted on large scaled datasets clearly show the strengths of the proposed methods over state-of-the-art methods. In particular, this thesis work contributes to effectively combining the structure and the content of XML documents for clustering, in order to improve the accuracy of the clustering solution. In addition, it also contributes by addressing the research gaps in frequent pattern mining to generate efficient and concise frequent subtrees with various node relationships that could be used in clustering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual environments can provide, through digital games and online social interfaces, extremely exciting forms of interactive entertainment. Because of their capability in displaying and manipulating information in natural and intuitive ways, such environments have found extensive applications in decision support, education and training in the health and science domains amongst others. Currently, the burden of validating both the interactive functionality and visual consistency of a virtual environment content is entirely carried out by developers and play-testers. While considerable research has been conducted in assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. The aim of this thesis is to determine whether the correctness of the images generated by a virtual environment can be quantitatively defined, and automatically measured, in order to facilitate the validation of the content. In an attempt to provide an environment-independent definition of visual consistency, a number of classification approaches were developed. First, a novel model-based object description was proposed in order to enable reasoning about the color and geometry change of virtual entities during a play-session. From such an analysis, two view-based connectionist approaches were developed to map from geometry and color spaces to a single, environment-independent, geometric transformation space; we used such a mapping to predict the correct visualization of the scene. Finally, an appearance-based aliasing detector was developed to show how incorrectness too, can be quantified for debugging purposes. Since computer games heavily rely on the use of highly complex and interactive virtual worlds, they provide an excellent test bed against which to develop, calibrate and validate our techniques. Experiments were conducted on a game engine and other virtual worlds prototypes to determine the applicability and effectiveness of our algorithms. The results show that quantifying visual correctness in virtual scenes is a feasible enterprise, and that effective automatic bug detection can be performed through the techniques we have developed. We expect these techniques to find application in large 3D games and virtual world studios that require a scalable solution to testing their virtual world software and digital content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an era of normative standardised literacy curriculum continuing to make space for culturally responsive literacy pedagogy is on ongoing challenge for early childhood educators. Collaborative participatory research and ethnographic studies of teachers who accomplish innovative and inclusive early childhood education in culturally diverse high poverty communities is urgent for the profession. Such pedagogies involve complex understandings of the cultural and political histories, and the dynamic potential, of the places in which school communities are located. By incorporating the study of local histories and biographies and researching neighbourhood changes teachers adapt mandated curriculum to maintain community knowledges and allow for positive identity work at the same time as they meet the authorised systems objectives. When teachers work with children as co-researchers through the study of people's lives in particular places and times, the community and its complex histories become a rich resource for young people's literacy repertoires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models (SSM). PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries Numpy and Scipy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimised and parallelised Fortran routines. These Fortran routines heavily utilise Basic Linear Algebra (BLAS) and Linear Algebra Package (LAPACK) functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.