233 resultados para Sensory
Resumo:
Feedforward inhibition deficits have been consistently demonstrated in a range of neuropsychiatric conditions using prepulse inhibition (PPI) of the acoustic startle eye-blink reflex when assessing sensorimotor gating. While PPI can be recorded in acutely decerebrated rats, behavioural, pharmacological and psychophysiological studies suggest the involvement of a complex neural network extending from brainstem nuclei to higher order cortical areas. The current functional magnetic resonance imaging study investigated the neural network underlying PPI and its association with electromyographically (EMG) recorded PPI of the acoustic startle eye-blink reflex in 16 healthy volunteers. A sparse imaging design was employed to model signal changes in blood oxygenation level-dependent (BOLD) responses to acoustic startle probes that were preceded by a prepulse at 120 ms or 480 ms stimulus onset asynchrony or without prepulse. Sensorimotor gating was EMG confirmed for the 120-ms prepulse condition, while startle responses in the 480-ms prepulse condition did not differ from startle alone. Multiple regression analysis of BOLD contrasts identified activation in pons, thalamus, caudate nuclei, left angular gyrus and bilaterally in anterior cingulate, associated with EMGrecorded sensorimotor gating. Planned contrasts confirmed increased pons activation for startle alone vs 120-ms prepulse condition, while increased anterior superior frontal gyrus activation was confirmed for the reverse contrast. Our findings are consistent with a primary pontine circuitry of sensorimotor gating that interconnects with inferior parietal, superior temporal, frontal and prefrontal cortices via thalamus and striatum. PPI processes in the prefrontal, frontal and superior temporal cortex were functionally distinct from sensorimotor gating.
Resumo:
People with schizophrenia perform poorly when recognising facial expressions of emotion, particularly negative emotions such as fear. This finding has been taken as evidence of a “negative emotion specific deficit”, putatively associated with a dysfunction in the limbic system, particularly the amygdala. An alternative explanation is that greater difficulty in recognising negative emotions may reflect a priori differences in task difficulty. The present study uses a differential deficit design to test the above argument. Facial emotion recognition accuracy for seven emotion categories was compared across three groups. Eighteen schizophrenia patients and one group of healthy age- and gender-matched controls viewed identical sets of stimuli. A second group of 18 age- and gender-matched controls viewed a degraded version of the same stimuli. The level of stimulus degradation was chosen so as to equate overall level of accuracy to the schizophrenia patients. Both the schizophrenia group and the degraded image control group showed reduced overall recognition accuracy and reduced recognition accuracy for fearful and sad facial stimuli compared with the intact-image control group. There were no differences in recognition accuracy for any emotion category between the schizophrenia group and the degraded image control group. These findings argue against a negative emotion specific deficit in schizophrenia.
Resumo:
Empirical evidence suggests impaired facial emotion recognition in schizophrenia. However, the nature of this deficit is the subject of ongoing research. The current study tested the hypothesis that a generalized deficit at an early stage of face-specific processing (i.e. putatively subserved by the fusiform gyrus) accounts for impaired facial emotion recognition in schizophrenia as opposed to the Negative Emotion-specific Deficit Model, which suggests impaired facial information processing at subsequent stages. Event-related potentials (ERPs) were recorded from 11 schizophrenia patients and 15 matched controls while performing a gender discrimination and a facial emotion recognition task. Significant reduction of the face-specific vertex positive potential (VPP) at a peak latency of 165 ms was confirmed in schizophrenia subjects whereas their early visual processing, as indexed by P1, was found to be intact. Attenuated VPP was found to correlate with subsequent P3 amplitude reduction and to predict accuracy when performing a facial emotion discrimination task. A subset of ten schizophrenia patients and ten matched healthy control subjects also performed similar tasks in the magnetic resonance imaging scanner. Patients showed reduced blood oxygenation level-dependent (BOLD) activation in the fusiform, inferior frontal, middle temporal and middle occipital gyrus as well as in the amygdala. Correlation analyses revealed that VPP and the subsequent P3a ERP components predict fusiform gyrus BOLD activation. These results suggest that problems in facial affect recognition in schizophrenia may represent flow-on effects of a generalized deficit in early visual processing.
Resumo:
The aim of the study was to assess the feasibility and effectiveness of aquatic‐based exercise in the form of deep water running ( DWR ) as part of a multimodal physiotherapy programme ( MMPP ) for breast cancer survivors. A controlled clinical trial was conducted in 42 primary breast cancer survivors recruited from community‐based P rimary C are C entres. Patients in the experimental group received a MMPP incorporating DWR , 3 times a week, for an 8‐week period. The control group received a leaflet containing instructions to continue with normal activities. Statistically significant improvements and intergroup effect size were found for the experimental group for P iper F atigue S cale‐ R evised total score ( d = 0.7, P = 0.001), as well as behavioural/severity ( d = 0.6, P = 0.05), affective/meaning ( d = 1.0, P = 0.001) and sensory ( d = 0.3, P = 0.03) domains. Statistically significant differences between the experimental and control groups were also found for general health ( d = 0.5, P < 0.05) and quality of life ( d = 1.3, P < 0.05). All participants attended over 80% of sessions, with no major adverse events reported. The results of this study suggest MMPP incorporating DWR decreases cancer‐related fatigue and improves general health and quality of life in breast cancer survivors. Further, the high level of adherence and lack of adverse events indicate such a programme is safe and feasible.
Resumo:
This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.
Resumo:
Patients with a number of psychiatric and neuropathological conditions demonstrate problems in recognising facial expressions of emotion. Research indicating that patients with schizophrenia perform more poorly in the recognition of negative valence facial stimuli than positive valence stimuli has been interpreted as evidence of a negative emotion specific deficit. An alternate explanation rests in the psychometric properties of the stimulus materials. This model suggests that the pattern of impairment observed in schizophrenia may reflect initial discrepancies in task difficulty between stimulus categories, which are not apparent in healthy subjects because of ceiling effects. This hypothesis is tested, by examining the performance of healthy subjects in a facial emotion categorisation task with three levels of stimulus resolution. Results confirm the predictions of the model, showing that performance degrades differentially across emotion categories, with the greatest deterioration to negative valence stimuli. In the light of these results, a possible methodology for detecting emotion specific deficits in clinical samples is discussed.
Resumo:
The characterisation of facial expression through landmark-based analysis methods such as FACEM (Pilowsky & Katsikitis, 1994) has a variety of uses in psychiatric and psychological research. In these systems, important structural relationships are extracted from images of facial expressions by the analysis of a pre-defined set of feature points. These relationship measures may then be used, for instance, to assess the degree of variability and similarity between different facial expressions of emotion. FaceXpress is a multimedia software suite that provides a generalised workbench for landmark-based facial emotion analysis and stimulus manipulation. It is a flexible tool that is designed to be specialised at runtime by the user. While FaceXpress has been used to implement the FACEM process, it can also be configured to support any other similar, arbitrary system for quantifying human facial emotion. FaceXpress also implements an integrated set of image processing tools and specialised tools for facial expression stimulus production including facial morphing routines and the generation of expression-representative line drawings from photographs.
Resumo:
Neuroimaging research has shown localised brain activation to different facial expressions. This, along with the finding that schizophrenia patients perform poorly in their recognition of negative emotions, has raised the suggestion that patients display an emotion specific impairment. We propose that this asymmetry in performance reflects task difficulty gradations, rather than aberrant processing in neural pathways subserving recognition of specific emotions. A neural network model is presented, which classifies facial expressions on the basis of measurements derived from human faces. After training, the network showed an accuracy pattern closely resembling that of healthy subjects. Lesioning of the network led to an overall decrease in the network’s discriminant capacity, with the greatest accuracy decrease to fear, disgust and anger stimuli. This implies that the differential pattern of impairment in schizophrenia patients can be explained without having to postulate impairment of specific processing modules for negative emotion recognition.
Resumo:
1. Introduction The success of self-regulation, in terms of enhancing older drivers’ safety and maintaining their mobility, depends largely upon older drivers’ awareness of the declines in their driving abilities. Therefore, interventions targeted at increasing older drivers’ safety should aim to enhance their awareness of their physical, sensory and cognitive limitations. Moreover, previous research suggests that driving behaviour change may occur through stages and that interventions and feedback may be perceived differently at each stage. 2. Study aims To further understand the process of driving self-regulation among older adults by exploring their perceptions and experiences of self-regulation, using the PAPM as a framework. To investigate the possible impact of feedback on their driving on their decision making process. 3. Methodology Research tool: Qualitative focus groups (n=5 sessions) Recruitment: Posters, media, newspaper advertisement and emails Inclusion criteria: Aged 70 or more, English-speaking, current drivers Participants: Convenience sample of 27 men and women aged 74 to 90 in the Sunshine Coast and Brisbane city, Queensland, Australia. 4. Analysis Thematic analysis was conducted following the process outlined by Braun and Clarke (2006) to identify, analyse and report themes within the data. Four main themes were identified.
Resumo:
The lateral amygdala (LA) receives information from auditory and visual sensory modalities, and uses this information to encode lasting memories that predict threat. One unresolved question about the amygdala is how multiple memories, derived from different sensory modalities, are organized at the level of neuronal ensembles. We previously showed that fear conditioning using an auditory conditioned stimulus (CS) was spatially allocated to a stable topography of neurons within the dorsolateral amygdala (LAd) (Bergstrom et al, 2011). Here, we asked how fear conditioning using a visual CS is topographically organized within the amygdala. To induce a lasting fear memory trace we paired either an auditory (2 khz, 55 dB, 20 s) or visual (1 Hz, 0.5 s on/0.5 s off, 35 lux, 20 s) CS with a mild foot shock unconditioned stimulus (0.6 mA, 0.5 s). To detect learning-induced plasticity in amygdala neurons, we used immunohistochemistry with an antibody for phosphorylated mitogen-activated protein kinase (pMAPK). Using a principal components analysis-based approach to extract and visualize spatial patterns, we uncovered two unique spatial patterns of activated neurons in the LA that were associated with auditory and visual fear conditioning. The first spatial pattern was specific to auditory cued fear conditioning and consisted of activated neurons topographically organized throughout the LAd and ventrolateral nuclei (LAvl) of the LA. The second spatial pattern overlapped for auditory and visual fear conditioning and was comprised of activated neurons located mainly within the LAvl. Overall, the density of pMAPK labeled cells throughout the LA was greatest in the auditory CS group, even though freezing in response to the visual and auditory CS was equivalent. There were no differences detected in the number of pMAPK activated neurons within the basal amygdala nuclei. Together, these results provide the first basic knowledge about the organizational structure of two different fear engrams within the amygdala and suggest they are dissociable at the level of neuronal ensembles within the LA
Resumo:
This poster presents the results of a critical review of the literature on the intersection between paramedic practice with Autism Spectrum Disorder (ASD) and previews the clinical and communication challenges likely to be experienced with these patients. Paramedics in Australia provide 24/7 out-of-hospital care to the community. Although their core business is to provide emergency care, paramedics also provide care for vulnerable people as a consequence of the social, economic or domestic milieu. Little is known about the frequency of use of emergency out-of-hospital services by children with ASD and their families. Similarly, little is known about the attitudes and perceptions of paramedics to children with ASD and their emergency health care. However, individuals with ASD are likely to require paramedic services at some point across the life span and may be more frequent users of health services as a consequence of the challenges they face. The high rate of co-morbidities of people diagnosed with ASD is reported and includes seizure disorders, gastro-intestinal disorders, metabolic disorders, hormonal dysfunction, ear, nose and throat infections, hearing impairment, hypertension, allergies/anaphylaxis, immune disorders, migraine and diabetes, gross/fine motor skill dysfunction, premature birth, birth defects, obesity and mental illness. Individuals with ASD may frequently experience concurrent communication, behaviour and sensory challenges. Consequently, Paramedics can encounter difficulties gathering important patient information which may compromise sensitive care. These interactions occur often in high pressure and emotionally challenging environments, which add to the difficulties in communicating the treatment and transport needs of this population.
Resumo:
In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%.
Resumo:
In this chapter art and play are considered children’s ‘first languages’, and therefore are placed at the centre of a curriculum for young children. Through art and play, children represent thought and action, which underpins their later understanding of the ‘second languages’ of reading, writing and numbering. Key issues such as image-making, graphic action, imagination, narrative, empathetic engagement and internalised thought are analysed as evidence of children’s construction of knowledge through art and play. Symbol making is the essence of being human. In children’s art and play, their symbol use captures their sensory modes in emotional and embodied ways, as children know their worlds and their place. The chapter addresses how children’s creation, manipulation and meaning making through engaged interaction with art materials are precursors to learning to read and write and, as first languages, should not be discarded nor replaced. The notion of creativity is explored in relation to pedagogical approaches. In a climate of testing regimes that emphasise ‘academic’ achievements, teachers are encouraged to not lose sight of imagination, pretence, constructive meaning making, holistic teaching and being a co-player and co-artist.
Resumo:
The rodent olfactory systems comprise the main olfactory system for the detection of odours and the accessory olfactory system which detects pheromones. In both systems, olfactory axon fascicles are ensheathed by olfactory glia, termed olfactory ensheathing cells (OECs), which are crucial for the growth and maintenance of the olfactory nerve. The growth-promoting and phagocytic characteristics of OECs make them potential candidates for neural repair therapies such as transplantation to repair the injured spinal cord. However, transplanting mixed populations of glia with unknown properties may lead to variations in outcomes for neural repair. As the phagocytic capacity of the accessory OECs has not yet been determined, we compared the phagocytic capacity of accessory and main OECs in vivo and in vitro. In normal healthy animals, the accessory OECs accumulated considerably less axon debris than main OECs in vivo. Analysis of freshly dissected OECs showed that accessory OECs contained 20% less fluorescent axon debris than main OECs. However, when assayed in vitro with exogenous axon debris added to the culture, the accessory OECs phagocytosed almost 20% more debris than main OECs. After surgical removal of one olfactory bulb which induced the degradation of main and accessory olfactory sensory axons, the accessory OECs responded by phagocytosing the axon debris. We conclude that while accessory OECs have the capacity to phagocytose axon debris, there are distinct differences in their phagocytic capacity compared to main OECs. These distinct differences may be of importance when preparing OECs for neural transplant repair therapies.