508 resultados para SURVEILLANCE NETWORK TRANSNET
Resumo:
The National Centre for Health Information Research & Training (formerly NCCH Brisbane) has been conducting an annual introductory ICD-10 coding program in Brisbane for seven years. In 2008, the Centre introduced a new initiative, inviting potential trainers to participate in a one week train the trainer workshop prior to the regular coder training. The new trainers are provided with the opportunity to practice their new skills with the support and assistance of the NCHIRT trainers during the subsequent introductory program. This paper will report on the results of a survey of participants of these programs about their experiences conducting training courses in their own countries. The train the trainer program as a means to create a cadre of trainers to support the implementation of ICD-11 will be explored.
Resumo:
A crucial contemporary policy question for governments across the globe is how to cope with international crime and terrorist networks. Many such “dark” networks—that is, networks that operate covertly and illegally—display a remarkable level of resilience when faced with shocks and attacks. Based on an in-depth study of three cases (MK, the armed wing of the African National Congress in South Africa during apartheid; FARC, the Marxist guerrilla movement in Colombia; and the Liberation Tigers of Tamil Eelam, LTTE, in Sri Lanka), we present a set of propositions to outline how shocks impact dark network characteristics (resources and legitimacy) and networked capabilities (replacing actors, linkages, balancing integration and differentiation) and how these in turn affect a dark network's resilience over time. We discuss the implications of our findings for policymakers.
Resumo:
This paper presents a “research frame” which we have found useful in analyzing complex socio- technical situations. The research frame is based on aspects of actor-network theory: “interressment”, “enrollment”, “points of passage” and the “trial of strength”. Each of these aspects are described in turn, making clear their purpose in the overall research frame. Having established the research frame it is used to analyse two examples. First, the use of speech recognition technology is examined in two different contexts, showing how to apply the frame to compare and contrast current situations. Next, a current medical consultation context is described and the research frame is used to consider how it could change with innovative technology. In both examples, the research frame shows that the use of an artefact or technology must be considered together with the context in which it is used.
Resumo:
Resilient organised crime groups survive and prosper despite law enforcement activity, criminal competition and market forces. Corrupt police networks, like any other crime network, must contain resiliency characteristics if they are to continue operation and avoid being closed down through detection and arrest of their members. This paper examines the resilience of a large corrupt police network, namely The Joke which operated in the Australian state of Queensland for a number of decades. The paper uses social network analysis tools to determine the resilient characteristics of the network. This paper also assumes that these characteristics will be different to those of mainstream organised crime groups because the police network operates within an established policing agency rather than as an independent entity hiding within the broader community.
Resumo:
Video surveillance systems using Closed Circuit Television (CCTV) cameras, is one of the fastest growing areas in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. This work attempts to address these problems by proposing an automatic suspicious behaviour detection which utilises contextual information. The utilisation of contextual information is done via three main components: a context space model, a data stream clustering algorithm, and an inference algorithm. The utilisation of contextual information is still limited in the domain of suspicious behaviour detection. Furthermore, it is nearly impossible to correctly understand human behaviour without considering the context where it is observed. This work presents experiments using video feeds taken from CAVIAR dataset and a camera mounted on one of the buildings Z-Block) at the Queensland University of Technology, Australia. From these experiments, it is shown that by exploiting contextual information, the proposed system is able to make more accurate detections, especially of those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information gives critical feedback to the system designers to refine the system.
Resumo:
This paper provides fundamental understanding for the use of cumulative plots for travel time estimation on signalized urban networks. Analytical modeling is performed to generate cumulative plots based on the availability of data: a) Case-D, for detector data only; b) Case-DS, for detector data and signal timings; and c) Case-DSS, for detector data, signal timings and saturation flow rate. The empirical study and sensitivity analysis based on simulation experiments have observed the consistency in performance for Case-DS and Case-DSS, whereas, for Case-D the performance is inconsistent. Case-D is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
In this article I would like to examine the promise and possibilities of music, digital media and National Broadband Network. I will do this based on concepts that have emerged from a study undertaken by Professor Andrew Brown and I that categorise technologies into what we term representational technologies and technologies with agency
Resumo:
The availability of bridges is crucial to people’s daily life and national economy. Bridge health prediction plays an important role in bridge management because maintenance optimization is implemented based on prediction results of bridge deterioration. Conventional bridge deterioration models can be categorised into two groups, namely condition states models and structural reliability models. Optimal maintenance strategy should be carried out based on both condition states and structural reliability of a bridge. However, none of existing deterioration models considers both condition states and structural reliability. This study thus proposes a Dynamic Objective Oriented Bayesian Network (DOOBN) based method to overcome the limitations of the existing methods. This methodology has the ability to act upon as a flexible unifying tool, which can integrate a variety of approaches and information for better bridge deterioration prediction. Two demonstrative case studies are conducted to preliminarily justify the feasibility of the methodology
Resumo:
The main limitations with existing fungal spore traps are that they are stationary and cannot be used in inaccessible or remote areas of Australia. This may result in delayed assessment, possible spread of harmful crop infestations and loss of crop yield and productivity. Fitted with the developed smart spore trap the UAV can fly, detect and monitor spores of plant pathogens in areas which previously were almost impossible to monitor. The technology will allow for earlier detection of emergency plant pests (EPPs) incursions by providing efficient and effective airborne surveillance, helping to protect Australia’s crops, pastures and the environment. The project is led by the Cooperative Research Centre for National Plant Biosecurity, with ARCAA/ QUT, CSIRO and the Queensland Government also providing resources. The prototype airplane was exhibited at the Innovation in Australia event December 7.
Resumo:
Networked control systems (NCSs) offer many advantages over conventional control; however, they also demonstrate challenging problems such as network-induced delay and packet losses. This paper proposes an approach of predictive compensation for simultaneous network-induced delays and packet losses. Different from the majority of existing NCS control methods, the proposed approach addresses co-design of both network and controller. It also alleviates the requirements of precise process models and full understanding of NCS network dynamics. For a series of possible sensor-to-actuator delays, the controller computes a series of corresponding redundant control values. Then, it sends out those control values in a single packet to the actuator. Once receiving the control packet, the actuator measures the actual sensor-to-actuator delay and computes the control signals from the control packet. When packet dropout occurs, the actuator utilizes past control packets to generate an appropriate control signal. The effectiveness of the approach is demonstrated through examples.
Resumo:
Online social networks can be found everywhere from chatting websites like MSN, blogs such as MySpace to social media such as YouTube and second life. Among them, there is one interesting type of online social networks, online dating network that is growing fast. This paper analyzes an online dating network from social network analysis point of view. Observations are made and results are obtained in order to suggest a better recommendation system for people-to-people networks.
Resumo:
The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.