232 resultados para SENSITIVE DETERMINATION
Resumo:
Introduction of dynamic pricing in present retail market, considerably affects customers with an increased cost of energy consumption. Therefore, customers are enforced to control their loads according to price variation. This paper proposes a new technique of Home Energy Management, which helps customers to minimize their cost of energy consumption by appropriately controlling their loads. Thermostatically Controllable Appliances (TCAs) such as air conditioner and water heater are focused in this study, as they consume more than 50% of the total household energy consumption. The control process includes stochastic dynamic programming, which incorporated uncertainties in price and demand variation. It leads to an accurate selection of appliance settings. It is followed by a real time control of selected appliances with its optimal settings. Temperature set points of TCAs are adjusted based on price droop which is a reflection of actual cost of energy consumption. Customer satisfaction is maintained within limits using constraint optimization. It is showed that considerable energy savings is achieved.
Resumo:
Polybrominated diphenylethers (PBDEs) are widely used as flame retardants in polymer materials, textiles, electronic boards and various other materials. Technical PBDE preparations are produced as mixtures of mainly penta-, octa- or decabrombiphenyl ethers1,2. PBDEs are structurally similar to other environmental pollutants like dioxins and PCBs, they are lipophilic and persistent compounds and are widespread in the environment. To date, no information is available on the levels of PBDEs in human serum in Australia. In 2003, more than 9000 blood samples were collected in Australia as part of the National Dioxins Program. The aim of this study was to evaluate PBDE concentrations in these samples, focusing on one age group.
Resumo:
The Sensitive Aunt Provotype was designed as part of Indoor Climate, a three-year research study of participatory design and user-driven innovation. It resulted from collaboration between two universities and five industry partners. Indoor Climate sought to understand experiences of comfort in domestic, business and institutional environments. This involved a literature review on the meaning of comfort, an ethnographic study of indoor environments, a provotyping process designed to provoke debate, and the design development of new products. A provotype is a provocative prototype. The title of the work Sensitive Aunt was derived from an analogy by one of the project partners and the colours emitted by the device represent the temperature, light intensity and air quality of the environment in which it is placed. In addition, the LED screen suggests actions to improve the indoor climate. The sensitive aunt provotype was designed to provoke conversation around different conceptions of a new product or service from the perspectives of manufacturers and design users. While both speculative design and provotypes inspire debate, speculative design focuses on the normative protocols of design industries while provotypes trigger discussion with the industry partners. Critically challenging ideas such as 21 degrees is the temperature in which people should be comfortable, provotypes combine participation and provocation and open up design to issues of refocus on usability and values.
Light sensitive alkoxyamines: New efficient agents for nitroxide mediated photopolymerisation (NMP2)
Resumo:
Background: It is important for nutrition intervention in malnourished patients to be guided by accurate evaluation and detection of small changes in the patient’s nutrition status over time. However, the current Subjective Global Assessment (SGA) is not able to detect changes in a short period of time. The aim of the study was to determine whether 7-point SGA is more time sensitive to nutrition changes than the conventional SGA. Methods: In this prospective study, 67 adult inpatients assessed as malnourished using both the 7-point SGA and conventional SGA were recruited. Each patient received nutrition intervention and was followed up post-discharge. Patients were reassessed using both tools at 1, 3 and 5 months from baseline assessment. Results: It took significantly shorter time to see a one-point change using 7-point SGA compared to conventional SGA (median: 1 month vs. 3 months, p = 0.002). The likelihood of at least a one-point change is 6.74 times greater in 7-point SGA compared to conventional SGA after controlling for age, gender and medical specialties (odds ratio = 6.74, 95% CI 2.88-15.80, p<0.001). Fifty-six percent of patients who had no change in SGA score had changes detected using 7-point SGA. The level of agreement was 100% (k = 1, p < 0.001) between 7-point SGA and 3-point SGA and 83% (k=0.726, p<0.001) between two blinded assessors for 7-point SGA. Conclusion: The 7-point SGA is more time sensitive in its response to nutrition changes than conventional SGA. It can be used to guide nutrition intervention for patients.
Resumo:
Multidrug resistance (MDR) occurs in prostate cancer, and this happens when the cancer cells resist chemotherapeutic drugs by pumping them out of the cells. MDR inhibitors such as cyclosporin A (CsA) can stop the pumping and enhance the drugs accumulated in the cells. The cellular drug accumulation is monitored using a microfluidic chip mounted on a single cell bioanalyzer. This equipment has been developed to measure accumulation of drugs such as doxorubicin (DOX) and fluorescently labeled paclitaxel (PTX) in single prostate cancer cells. The inhibition of drug efflux on the same prostate cell was examined in drug-sensitive and drug-resistant cells. Accumulation of these drug molecules was not found in the MDR cells, PC-3 RX-DT2R cells. Enhanced drug accumulation was observed only after treating the MDR cell in the presence of 5 μM of CsA as the MDR inhibitor. We envision this monitoring of the accumulation of fluorescent molecules (drug or fluorescent molecules), if conducted on single patient cancer cells, can provide information for clinical monitoring of patients undergoing chemotherapy in the future.
Resumo:
After over 100 years of constant dissatisfaction with the accuracy of suicide data, this paper suggests that the problem may actually lie with the category of suicide itself. In almost all previous research, ‘suicide’ is taken to be a self-evidently valid category of death, not an object of study in its own right. Instead, the focus in this paper is upon the presupposition that how a social fact like suicide is counted depends upon norms for its governmental regulation, leading to a reciprocal relationship between social norms and statistical norms. Since this relationship is centred almost entirely in the coroner’s office, this paper examines governmental, definitional and categorisational issues relating to how coroners reach findings of suicide. The intention of this paper is to contribute to international debates over how suicide can best be conceptualised and adjudged.
Resumo:
Over the past decade, an exciting area of research has emerged that demonstrates strong links between specific nursing care activities and patient outcomes. This body of research has resulted in the identification of a set of "nursing-sensitive outcomes"(NSOs). These NSOs may be interpreted with more meaning when they are linked to evidence-based best practice guidelines, which provide a structured means of ensuring care is consistent among all health care team members, across geographic locations, and across care settings. Uptake of evidence-based best practices at the point of care has been shown to have a measurable positive impact on processes of care and patient outcomes. The purpose of this paper is to present a systematic, narrative review of the literature regarding the clinical effectiveness of nursing management strategies on stroke patient outcomes sensitive to nursing interventions. Subsequent investigation will explore current applications of nursing-sensitive outcomes to patients with stroke, and identify and validate measurable NSOs within stroke care delivery.
Resumo:
Background Genetic testing is recommended when the probability of a disease-associated germline mutation exceeds 10%. Germline mutations are found in approximately 25% of individuals with phaeochromcytoma (PCC) or paraganglioma (PGL); however, genetic heterogeneity for PCC/PGL means many genes may require sequencing. A phenotype-directed iterative approach may limit costs but may also delay diagnosis, and will not detect mutations in genes not previously associated with PCC/PGL. Objective To assess whether whole exome sequencing (WES) was efficient and sensitive for mutation detection in PCC/PGL. Methods Whole exome sequencing was performed on blinded samples from eleven individuals with PCC/PGL and known mutations. Illumina TruSeq™ (Illumina Inc, San Diego, CA, USA) was used for exome capture of seven samples, and NimbleGen SeqCap EZ v3.0 (Roche NimbleGen Inc, Basel, Switzerland) for five samples (one sample was repeated). Massive parallel sequencing was performed on multiplexed samples. Sequencing data were called using Genome Analysis Toolkit and annotated using annovar. Data were assessed for coding variants in RET, NF1, VHL, SDHD, SDHB, SDHC, SDHA, SDHAF2, KIF1B, TMEM127, EGLN1 and MAX. Target capture of five exome capture platforms was compared. Results Six of seven mutations were detected using Illumina TruSeq™ exome capture. All five mutations were detected using NimbleGen SeqCap EZ v3.0 platform, including the mutation missed using Illumina TruSeq™ capture. Target capture for exons in known PCC/PGL genes differs substantially between platforms. Exome sequencing was inexpensive (<$A800 per sample for reagents) and rapid (results <5 weeks from sample reception). Conclusion Whole exome sequencing is sensitive, rapid and efficient for detection of PCC/PGL germline mutations. However, capture platform selection is critical to maximize sensitivity.
Resumo:
A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component–artificial networks (PC–ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC–ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.
Resumo:
It is difficult to determine sulfur-containing volatile organic compounds in the atmosphere because of their reactivity. Primary off-line techniques may suffer losses of analytes during the transportation from field to laboratory and sample preparation. In this study, a novel method was developed to directly measure dimethyl sulfide at parts-per-billion concentration levels in the atmosphere using vacuum ultraviolet single photon ionization time-of-flight mass spectrometry. This technique offers continuous sampling at a response rate of one measurement per second, or cumulative measurements over longer time periods. Laboratory prepared samples of different concentrations of dimethyl sulfide in pure nitrogen gas were analyzed at several sampling frequencies. Good precision was achieved using sampling periods of at least 60 seconds with a relative standard deviation of less than 25%. The detection limit for dimethyl sulfide was below the 3 ppb olfactory threshold. These results demonstrate that single photon ionization time-of-flight mass spectrometry is a valuable tool for rapid, real-time measurements of sulfur-containing organic compounds in the air.
Resumo:
BACKGROUND Many patients presenting to the emergency department (ED) for assessment of possible acute coronary syndrome (ACS) have low cardiac troponin concentrations that change very little on repeat blood draw. It is unclear if a lack of change in cardiac troponin concentration can be used to identify acutely presenting patients at low risk of ACS. METHODS We used the hs-cTnI assay from Abbott Diagnostics, which can detect cTnI in the blood of nearly all people. We identified a population of ED patients being assessed for ACS with repeat cTnI measurement who ultimately were proven to have no acute cardiac disease at the time of presentation. We used data from the repeat sampling to calculate total within-person CV (CV(T)) and, knowing the assay analytical CV (CV(A)), we could calculate within-person biological variation (CV(i)), reference change values (RCVs), and absolute RCV delta cTnI concentrations. RESULTS We had data sets on 283 patients. Men and women had similar CV(i) values of approximately 14%, which was similar at all concentrations <40 ng/L. The biological variation was not dependent on the time interval between sample collections (t = 1.5-17 h). The absolute delta critical reference change value was similar no matter what the initial cTnI concentration was. More than 90% of subjects had a critical reference change value <5 ng/L, and 97% had values of <10 ng/L. CONCLUSIONS With this hs-cTnI assay, delta cTnI seems to be a useful tool for rapidly identifying ED patients at low risk for possible ACS.
Resumo:
A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.
Resumo:
Derailments are a significant cost to the Australian sugar industry with damage to rail infrastructure and rolling stock in excess of $2 M per annum. Many factors can contribute to cane rail derailments. The more prevalent factors are discussed. Derailment statistics on likely causes for cane rail derailments are presented with the case of empty wagons on the main line being the highest contributor to business cost. Historically, the lateral to vertical wheel load ratio, termed the derailment ratio, has been used to indicate the derailment probability of rolling stock. When the derailment ratio reaches the Nadal limit of 0.81 for cane rail operations, there is a high probability that a derailment will occur. Contributing factors for derailments include the operating forces, the geometric variables of the rolling stock and the geometric deviations of the railway track. These combined, have the capacity to affect the risk of derailment for a cane rail transport operating system. The derailment type that is responsible for creating the most damage to assets and creating mill stops is the flange climb derailment, as these derailments usually occur at speed with a full rake of empty wagons. The typical forces that contribute to the flange climb derailment case for cane rail operations are analysed and a practical derailment model is developed to enable operators to better appreciate the most significant contributing factors to this type of derailment. The paper aims to: (a) improve awareness of the significance of physical operating parameters so that these principles can be included in locomotive driver training and (b) improve awareness of track and wagon variables related to the risk of derailment so that maintainers of the rail system can allocate funds for maintenance more effectively.
Resumo:
Carbon nanostructures (CNs) are amongst the most promising biorecognition nanomaterials due to their unprecedented optical, electrical and structural properties. As such, CNs may be harnessed to tackle the detrimental public health and socio-economic adversities associated with neurodegenerative diseases (NDs). In particular, CNs may be tailored for a specific determination of biomarkers indicative of NDs. However, the realization of such a biosensor represents a significant technological challenge in the uniform fabrication of CNs with outstanding qualities in order to facilitate a highly-sensitive detection of biomarkers suspended in complex biological environments. Notably, the versatility of plasma-based techniques for the synthesis and surface modification of CNs may be embraced to optimize the biorecognition performance and capabilities. This review surveys the recent advances in CN-based biosensors, and highlights the benefits of plasma-processing techniques to enable, enhance, and tailor the performance and optimize the fabrication of CNs, towards the construction of biosensors with unparalleled performance for the early diagnosis of NDs, via a plethora of energy-efficient, environmentally-benign, and inexpensive approaches.